固态电池的电压波动是如何产生的?

锂电联盟会长 2024-12-19 09:46

点击左上角“锂电联盟会长”,即可关注!

      

固态锂金属电池(ASSLBs)是解决锂离子电池安全问题的下一代电池的典范。在ASSLBs中,排除了易燃的有机液态电解质,而固态电解质同时充当锂离子导体和正负极隔膜。特别是,与常规锂离子电池系统高度兼容的复合固态电解质(CSEs),被认为是首批商业化ASSLBs最现实的候选固态电解质。过去十年中,通过将聚氧化乙烯(PEO)与无机填料(例如,Al2O3、Li7La3Zr2O12(LLZO)和Li1.3Al0.3Ti1.7(PO4)3(LATP))复合成各种形状,CSEs的离子导电性得到了改善,使其更具有商业化的前景。相比之下,像LLZO、LATP和Li10GeP2S12这样的无机固态电解质,虽然展现出高的离子导电性,但因高成本和严重的稳定性问题而受到限制。硫化物基材料已知会与大气中的湿气反应,产生有毒的硫化氢(H2S),而氧化物基材料则倾向于与CO2和湿气反应,导致Li2CO3或LiOH的形成,这显著降低了离子导电性。这些反应显著降低了这些材料的大气稳定性,如许多研究所报告的。固态电解质和锂金属之间的界面反应也根据操作温度不同,恶化了ASSLBs的稳定性。此外,由于结构电化学不稳定性引起的锂枝晶生长问题,在无机固态电解质中最为关键,但在CSEs中由于其结构均匀性而本征防止了枝晶生长,因此并未被充分讨论。在这方面,LG Energy Solution Ltd.宣布将在2026年率先商业化基于CSE的半固态电池,领先于其他类型的固态电解质。然而,尽管CSEs即将商业化,但其稳定性问题仍然是一个障碍。为了识别稳定性问题的原因,分析ASSLB的故障模式至关重要。然而,CSE的粘弹性和不透明性质使得对ASSLB故障的现象学阐释面临重大挑战。基于CSE的ASSLBs的故障通常被认为是随机的,并且模糊地归因于PEO氧化或锂枝晶生长,而没有深入研究。因此,无法对稳定性进行精确和可重复的预测,阻碍了基于CSE的ASSLBs的广泛商业化。在充电状态下电池电压的波动定义的电压噪声,在先前的ASSLB研究中并不经常被分析。只有少数研究表明电压噪声与基于CSE的ASSLBs的故障之间存在相关性。然而,在之前的研究中,研究人员发现基于CSE的ASSLBs的故障经常伴随着电压噪声。这种电压噪声可能表明是由于以下关键原因在ASSLBs中引起的锂枝晶微穿透:1)锂具有低表面能(≈0.52 J m−2),在热力学上有利于枝晶生长;2)由于CSE的离子导电性低于液态电解质,CSE中的锂浓度梯度不均匀;3)CSE的物理刚性不足以防止锂枝晶生长。因此,研究人员提出这种电压噪声,其特征是充电电压的不规则波动,可以作为由内部退化过程引起的电池故障的非破坏性指标,鉴于其重要性,必须紧急和全面地识别。    
近日,首尔国立大学Youn Sang Kim、Yuanzhe Piao、庆北国立大学Jeeyoung Yoo团队提出了一种新的失效模式——电压噪声故障(VNF),这是由锂枝晶微穿透引起的,并通过综合技术如激光诱导击穿图谱(LIBS)和滴定气相色谱(TGC)等手段进行了识别和验证。研究揭示了VNF的机制,证明了从正极溶解并传导到负极的过渡金属作为锂枝晶生长的种子,导致了VNF的发生。受此机制启发,并借助密度泛函理论(DFT)计算的帮助,团队提出了在正极-复合固态电解质(CSE)界面使用普鲁士蓝类似物(PBA)作为过渡金属清除层的策略,以抑制锂枝晶的生长和VNF的发生。结果表明,采用PBA的ASSLBs展现出了卓越的容量(0.5 C时为189 mAh g−1,NCM811)和稳定的循环性能(1200个周期无故障)。    
该成果以"Voltage Noise Failure Induced by Li Dendritic Micro-Penetration in All-Solid-State Li-Metal Battery with Composite Solid Electrolyte"为题发表在《Advanced Energy Materials》期刊,第一作者是Heejun Yun, Eunji Lee。
(电化学能源整理,未经申请,不得转载)
【工作要点】
本文识别并深入解析了全固态锂金属电池(ASSLBs)中一种未被充分认识的失效模式——电压噪声故障(VNF),这种失效由锂枝晶的微穿透引起。研究团队通过激光诱导击穿图谱(LIBS)等技术直接观察到3D锂浓度图,证实了锂枝晶穿透现象。VNF的起源是过渡金属从正极溶解后迁移到负极,成为锂枝晶生长的种子。基于这一机制,并借助密度泛函理论(DFT)计算,研究者提出了一种在正极-复合固态电解质(CSE)界面使用普鲁士蓝类似物(PBA)作为过渡金属清除层的策略,有效吸附溶解的过渡金属,从而抑制锂枝晶的生长和VNF的发生。实验结果表明,采用PBA层的ASSLBs展现出了卓越的容量(0.5 C时为189 mAh g−1,NCM811)和稳定的循环性能(1200个周期无故障),显著提高了电池的稳定性和安全性。    
图1:通过各种电化学评估表征电压噪声故障。a)ASSLBs和电压噪声失效的示意图。b)正常(下方)和异常(上方)NCM811/PEO-LLZO/Li电池的充放电曲线。插图显示了充电曲线中噪声失效的放大视图。c)解释在充放电曲线中观察到的电压噪声的说明性插图。d)恒流/恒压(0.5 C-rate,电流截止设置为最大电流的50%)模式充放电测量,用于确定临界电压,逐步增加电压。e)NCM811/PEO-LLZO/Li ASSLB的长期循环数据。f)SUS/CSE/Li电池的线性扫描伏安曲线。g)通过逐步增加的恒定电位充电测量漏电流。h)VNF和破坏性PEO氧化的电压范围差异。    
图2:在不同电池中随机发生的电压噪声故障的可重复性测量。a)在100个充放电周期中NCM811/CSE/Li ASSLBs因电压噪声导致的电池故障发生率的测量。b)在CC/CV模式充放电测量中VNF的典型时间-电压曲线。放大的插图区域显示了CV充电中首次出现的电压噪声。c)发生VNF的ASSLBs的代表性长期循环数据。d)发生VNF的ASSLB的容量-电压曲线。对ASSLBs进行逐步增加的临界电压测试,e)厚CSE,f)刚性CSE,g)LFP正极,h)LCO正极。每个测试都重复了4个样本。    
图3:对发生电压噪声故障的ASSLBs进行事后分析。a)原始CSE的激光诱导击穿图谱的照片。b)LIBS测量后原始CSE的共聚焦扫描显微镜图像。c)原始CSE(3D图像)和d)发生VNF的ASSLB中的CSE的Li浓度图的重建图像。e)面向锂金属负极的CSE X-Y平面的等高线图。f)在激活的ASSLB(左)和发生VNF的ASSLB(右)中锂金属负极的SEM图像和g)XPS图谱(850870 eV)。h)原始锂金属(左)和发生VNF的ASSLB中的锂金属(右)的ICP-MS数据。    
图4:锂枝晶微穿透和由此引起的VNF的总机制的示意图。   
这一机制特别适用于高容量高镍正极(≥80 mol% Ni),因为Ni2+离子(83 pm)的半径与Li+离子(90 pm)相似,可以轻松地通过PEO分子链跃迁。VNF发生的五个步骤:
  1. 充电时PEO的氢气产生:在充电过程中,PEO的轻微氢气演化启动了CSE-阴极界面处VNF的发生。

  2. HTFSI的生成和攻击NCM811阴极:随后,H2气体与Li盐的TFSI阴离子反应,生成高反应性的HTFSI,这种HTFSI攻击NCM811,导致过渡金属溶解。

  3. 过渡金属溶解并通过PEO的非离子选择性链间跃迁移动到锂金属阳极:正过渡金属阳离子可以沿着CSE的醚基团向阴极侧移动。

  4. 锂金属的树突状生长,加速了过渡金属种子的生长:过渡金属作为阳极侧锂枝晶的成核种子,锂枝晶微穿透CSE。

  5. 锂枝晶的微穿透和发生VNF:最终,锂枝晶的微穿透导致VNF的发生。

图5:在正极-CSE界面设计过渡金属清除层。a)过渡金属清除层的示意图。b)计算PBA和Ni原子在5个原子位置上的相互作用能量。c)通过水解沉淀法合成的Fe-Fe PBA的SEM-EDS图像。d)合成PBA的XRD图谱。e)PBA-CSE的横截面和f)垂直SEM图像。    
图6:带有PBA-CSE的ASSLB的电化学性能。a)速率能力测试(0.1-1C)的放电容量和b)每个电池的电压曲线。c)DFT计算PBA和TFSI阴离子之间的结合能。d)在2.8V4.3V,0.5 C-rate下ASSLBs的长期循环性能。放大的图像显示了参考ASSLB中1)初始(包括重现的)和2)持续重复的VNF发生。e)在温和截止电压条件下(2.8V4.2V)的长期循环数据。f)带有PBA-CSE的ASSLB的关键电压测量。这个测试用4个相同的电池重复进行,以确保测试的可靠性。所有测试都在40℃下进行。    
图7:在循环过程中ASSLBs电阻分量变化的分析。a-c)参考ASSLB的电化学阻抗谱,SEM图像和Ni 2D XPS图(855 eV)。d-f)NCM811/PBA-CSE/Li ASSLB的电化学阻抗谱,SEM图像和Ni 2D XPS图(855 eV)。来自EIS测量的g)参考ASSLB和h)NCM811/PBA-CSE/Li ASSLB的放松时间分布的转换数据。
【结论】
总之,研究人员证明了ASSLBs中的VNF是由锂枝晶微穿透引起的电池故障的一个指示性现象,并通过采用普鲁士蓝类似物(PBA)作为过渡金属清除层来减弱VNF。通过LIBS分析首次直观观察到CSEs内部的锂枝晶生长。因此,研究人员展示了VNF是CSEs中锂枝晶微穿透的非破坏性指标。这一现象经常发生在高容量镍富集正极(≥80 mol% Ni)中,并阻碍了ASSLBs的商业化,因为正极处的过渡金属溶解。为了抑制这种VNF,研究人员通过DFT计算设计,在正极-电解质界面插入了PBA作为过渡金属清除层。因此,使用PBA-CSE的ASSLB展示了显著的放电容量189.8 mAh g−1(在0.5 C时),在1200个循环中表现出稳定的充放电,并显示出最小的容量衰减率,每循环0.056%。这一关于ASSLBs故障的基础和及时的发现将作为一个关键的基石,促进ASSLBs的广泛商业化。    
【制备过程】
复合固态电解质(CSE)的制备:将聚氧化乙烯(PEO)和锂双(三氟甲磺酰基)酰亚胺(LiTFSI)溶解在乙腈中,加入LLZO纳米颗粒后搅拌形成均匀溶液,随后在PTFE模具上铺展并干燥以形成固态电解质膜,最后在氩气氛围中热处理。此外,还包括正极材料的制备,即将NCM811、导电剂、PVDF、LiTFSI和增塑剂(SN)混合在乙腈中形成均匀浆料,涂覆在铝集流体上并干燥以形成正极片。最后,将制备的正极、CSE和锂金属负极组装成2032型扣式电池,并在40℃下进行电化学测试。为了抑制电压噪声失效(VNF),在正极-CSE界面引入了普鲁士蓝类似物(PBA)作为过渡金属清除层,通过简单的干法涂覆技术将PBA均匀涂覆在CSE上,以增强电池的稳定性和性能。
Heejun Yun, Eunji Lee, Juyeon Han, Eunbin Jang, Jinil Cho, Heebae Kim, Jeewon Lee, Byeongyun Min, Jemin Lee, Yuanzhe Piao, Jeeyoung Yoo, and Youn Sang Kim, "Voltage Noise Failure Induced by Li Dendritic Micro-Penetration in All-Solid-State Li-Metal Battery with Composite Solid Electrolyte," Adv. Energy Mater. 2024, 2404044.    
DOI: 10.1002/aenm.202404044.
来源:电化学能源
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 95浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 111浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 162浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 185浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 136浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 136浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 187浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 150浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 79浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 203浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 155浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 173浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 102浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 241浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦