电池储能系统集成技术与应用

电力电子技术与新能源 2024-12-18 21:28

欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 1003941203


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


小编推荐值得一看的书单电力电子技术与新能源小店


  《电池储能系统集成技术与应用》较为系统和全面地论述了电池储能系统集成技术所面临的问题与任务、系统架构、关键设备、运行控制、电气设计、结构设计、热设计、消防安全设计、通信与控制、设备集成与安装调试、建模仿真及先进技术应用展望等,*后介绍了典型应用案例与系统产品。《电池储能系统集成技术与应用》的内容源于作者及其所在团队多年的技术研究与积累,写作的初衷旨在为从事电池储能系统集成设计的工程师、高等院校从事储能系统研究的教师和学生提供参考,目的在于抛砖引玉,促进电池储能系统集成技术在我国的发展。


前言
作者简介
第1章 绪论 1
1.1 储能市场概况 1
1.2 电池储能的发展趋势 4
1.3 电池储能系统的基本特点与面临的挑战 9
1.4 电池储能系统集成技术的任务 10
1.5 本书主要内容 12
参考文献 13
第2章 电池储能系统架构与关键设备 15
2.1 电池储能系统架构 15
2.2 电池储能系统性能指标 16
2.3 电池及电池管理系统 19
2.3.1 先进铅酸电池 19
2.3.2 全钒液流电池 22
2.3.3 锂离子电池 27
2.4 储能变流器 33
2.5 电池储能系统成本分析 38
2.6 小结 39
参考文献 39
第3章 电池储能系统主要应用与解决方案 43
3.1 火储联合调频系统 43
3.1.1 火电机组AGC基本原理 43
3.1.2 火储联合系统 45
3.2 辅助新能源并网 47
3.2.1 削峰填谷 48
3.2.2 提高预测精度 50
3.2.3 平滑 53
3.2.4  直流耦合系统及控制 55
3.3 一次调频 61
3.3.1 独立一次调频 61
3.3.2 新能源配置储能系统实现一次调频 62
3.4 微电网 65
3.4.1 交流母线微电网 66
3.4.2 直流母线微电网 68
3.4.3 无缝切换 69
3.4.4 微电网能量管理系统 70
3.5 小结 72
参考文献 72
第4章 电池储能系统电气设计 76
4.1 电气系统概述 76
4.2 低压开关柜设计 77
4.2.1 电气绝缘 77
4.2.2 导体设计 81
4.2.3 短路故障导体应力计算 84
4.2.4 低压断路器 91
4.2.5 交流低压SPD 95
4.3 变压器 101
4.3.1 变压器的选型 101
4.3.2 交流接地方式 103
4.4 高压开关柜 106
4.4.1 高压开关柜的选型 106
4.4.2 中置柜 107
4.4.3 环网柜 109
4.4.4 C-GIS 113
4.4.5 高压电力线缆的选型 114
4.4.6 高压避雷器 115
4.5 电池汇流柜的设计 116
4.5.1 直流汇流回路设计 116
4.5.2 直流侧极间短路故障分析 121
4.6 控制配电设计 128
4.7 电池储能系统并网对配电网的影响 129
4.8 小结 133
参考文献 133
第5章 电池储能系统结构与安全设计 140
5.1 整体结构 140
5.2 围护结构与布局 144
5.3 接地与静电防护 146
5.4 热管理系统设计 147
5.4.1 散热冷却方式 148
5.4.2 电池功耗发热量计算 153
5.4.3 外部静渗入热量计算 155
5.4.4 温控系统功率计算及控制逻辑 158
5.5 结构与散热仿真 161
5.6 系统火灾与自动灭火系统设计 165
5.6.1 火灾与电池热失控 165
5.6.2 自动灭火系统设计 169
5.6.3 火探管灭火系统 180
5.7 小结 181
参考文献 182
第6章 电池储能系统本地控制与远程通信 186
6.1 电池储能系统本地控制与管理 186
6.1.1 本地控制器硬件平台 187
6.1.2 电池储能系统内部通信方式 188
6.1.3 本地控制器软件架构 193
6.1.4 电池储能系统运行状态与控制逻辑 195
6.2 电池储能系统监控与能量管理 200
6.2.1 电池储能系统通信设备配置 200
6.2.2 电池储能系统站级SCADA系统 201
6.2.3 能量管理系统 203
6.3 IEC 61850在电池储能系统中的应用 206
6.3.1 IEC 61850系列标准 206
6.3.2 IEC 61850技术特点 209
6.3.3 IEC 61850建模的基本概念 210
6.3.4 电池储能系统的IEC 61850建模 215
6.4 小结 219
参考文献 220
第7章 电池储能系统设备集成安装与检验 222
7.1 集装箱及户外柜检验 222
7.2 电气设备安装与检验 223
7.2.1 高压开关柜安装与检验 223
7.2.2 变压器安装与检验 228
7.2.3 低压开关柜安装与检验 229
7.2.4 储能变流器安装与检验 231
7.2.5 直流汇流柜及直流线缆安装与检验 232
7.3 温控系统安装与检验 234
7.4 消防系统安装与检验 236
7.5 电池储能系统出厂调试 237
7.6 电池储能系统起吊运输与现场安装 239
7.6.1 起吊运输 239
7.6.2 现场安装 240
7.7 小结 241
参考文献 242
第8章 电池储能系统建模与仿真 243
8.1 储能电池建模 243
8.1.1 常用电池模型 243
8.1.2 改进型电池模型 244
8.2 锂离子电池仿真分析 246
8.3 铅酸电池仿真分析 249
8.4 储能变流器建模与控制 252
8.4.1 储能变流器同步旋转坐标系建模 252
8.4.2 储能变流器矢量控制 255
8.4.3 储能变流器虚拟同步机控制 256
8.5 系统仿真 259
8.5.1 调频控制 259
8.5.2 调压控制 263
8.5.3 紧急功率支撑 267
8.5.4 调峰控制 268
8.5.5 计及SOC变化的电池储能系统控制 270
8.6 小结 273
参考文献 273
第9章 先进技术在电池储能系统中的应用展望 275
9.1 电池储能系统与物联网 275
9.1.1 物联网概述 275
9.1.2 物联网技术在电池储能系统中的应用 276
9.1.3 物联网对电池储能系统的要求 279
9.2 神经网络技术在电池储能系统中的应用 279
9.2.1 基于神经网络的电池储能系统实时容量识别 280
9.2.2 基于神经网络的电池储能系统软故障状态识别与保护 284
9.2.3 神经网络技术在电池储能系统中的应用展望 287
9.3 电池储能系统与区块链技术 288
9.3.1 区块链技术概述 288
9.3.2 共享储能技术 290
9.3.3 基于区块链技术的共享储能交易体系 291
9.3.4 基于区块链技术的共享储能商业运营思考 296
9.4 小结 297
参考文献 298
第10章 储能集成技术典型应用案例与系统 301
10.1 典型应用案例 301
10.1.1 双湖微电网 301
10.1.2 兆光火储联合调频系统 305
10.1.3 日本直流光储项目 308
10.1.4 夏威夷风储项目 311
10.2 典型电池储能系统 312
10.2.1 Younicos电池储能系统 312
10.2.2 CellCube电池储能系统 313
10.2.3 Ingeteam电池储能系统 315
10.2.4 Power Electronics电池储能系统 317
10.3 小结 318

文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电池储能系统集成技术与应用 (余勇)板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

    在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。

PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论 (0)
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 386浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 165浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 90浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 57浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 33浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 300浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 199浏览
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 102浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 58浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 85浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 150浏览
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 83浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦