RT-Thread时钟管理学习总结

嵌入式客栈 2021-01-20 00:00

时间,不管在任何生活场合,都是一个非常重要概念。试想一下,假如没有了时间,这个世界几乎所有的事物都会乱套,但同时很多科学家也会提出疑问,在客观世界里面,时间是真实存在的吗?(扯得有点远~哈哈)


回到正题,任何操作系统的运行,都离不开时间。因为操作系统需要有一个界定标准,去规划各种进程或线程的运行,时间就是这个统一的标准。操作系统通过时间的流逝,定期去检查线程是否已经达到调度标准,定期去检查是否有一些定时任务需要执行,等等。


关于RT-Thread时钟管理相关的内容,官方提供了比较丰富的文档作为参考,具体可以查看以下链接:

https://www.rt-thread.org/document/site/programming-manual/timer/timer/


本文尝试从以下几个方面总结一下RT-Thread时钟管理的学习过程。

时钟相关的概念描述

 

什么是时钟节拍?任何操作系统都需要人为地提供一个时钟节拍,通常这个时钟节拍被称为系统心跳,而且这个系统心跳是通过一个硬件定时器来周期性提供的。这个时钟节拍就好像我们生活里面的钟表的秒针一样,每过一秒,秒针活动一格。


在操作系统里面,硬件定时器中断一次,用来记录时钟节拍的全局变量(rt_tick)就会累加,这个变量只会增加而不会减少,因为时间总是往前流逝的。比如我们初始化硬件定时器为1毫秒中断一次,那这个 rt_tick 每过1毫秒就会加1。


如上图所示,硬件定时器每1毫秒中断一次,产生一个节拍。假如系统监测到在第8个节拍的时候,某个线程的时间片用完了,就会执行一次线程调度;假如在第n+1个节拍的时候,监测到某个定时器的时间到了,就会开始执行这个定时器任务。


RT-Thread是如何实现时钟节拍的?相信不少工程师都知道,Cortex-M系列单片机内部有一个嘀嗒时钟 systick 硬件定时器,RT-Thread 就是使用这个 systick 时钟来触发定时器中断,然后实现时钟节拍的全局变量不断自增。


定时器的管理机制


在单片机裸机编程的时候,通常都是使用硬件定时器进行计数,当硬件定时器的计数值满足溢出条件后,就会触发定时器中断,然后我们在定时器中断里面处理任务就可以了。


在RT-Thread实时操作系统里面,提供了一种软件定时器机制,这种软件定时器的定时长度是以时钟节拍为单位的,并且定时的时间长度必须是时钟节拍的整数倍。软件定时器可以设置为单次触发或周期触发,也可以设置为HARD_TIMER模式或SOFT_TIMER模式。


定时器HARD_TIMER模式,这种模式下的定时器超时函数,需要在中断的上下文环境下执行,并且对于超时函数的要求与中断服务函数的要求是一致的,也就是说,超时函数的执行时间要足够短,执行时不能挂起线程,不能去申请或释放动态内存。


定时器的SOFT_TIMER模式,这种模式相当于启动了一个定时器线程,定时器的超时函数会在这个timer线程的上下文环境下执行,该模式使用的时候,没有HARD_TIMER模式那么复杂,因为这种模式其实就是一个定时器线程在进行工作和调度。


RT-Thread的定时器模块里面,维护了一个有序的定时器链表,这个链表是用来管理当前处于活动状态的定时器的,每次时钟节拍中断的时候,都会检测这个定时器链表,看看是否有超时时间到达。RT-Thread官方对这个定时器链表的工作机制已经做了详细的描述,如下图所示。


对于有序链表的搜索,是比较消耗时间的,所以为了加快链表的搜索速度,RT-Thread在原来有序链表的基础上,加入了跳表算法,使用这种算法可以加快链表搜索元素的速度,提升搜索的效率,但跳表算法是一种用“空间换时间”的算法,会有一定的内存消耗。


定时器相关的API函数


RT-Thread提供了一系列API函数接口,方便开发者对定时器进行一系列操作,包括::创建/初始化定时器、启动定时器、运行定时器、删除/脱离定时器。


所有定时器在定时超时后都会从定时器链表中被移除,而周期性定时器会在它再次启动时被加入定时器链表,这与定时器参数设置相关。在每次的操作系统时钟中断发生时,都会对已经超时的定时器状态参数做改变。

定时器应用示例


定时器相关的应用示例,主要是为了验证以上定时器相关的API函数接口,这里包含两个定时器示例,分别是动态定时器示例和静态定时器示例。


示例源码下载链接:

https://github.com/embediot/rtthread_study_notes

https://gitee.com/embediot/rtthread_study_notes


动态定时器示例和静态定时器示例都是创建两个定时器,一个定时器是单次触发模式,一个定时器是周期性触发模式。


timer_test.h头文件里面,通过打开相应的宏定义开关,重新编译工程源码,下载到开发板即可验证实验现象,如下图所示。


定时器使用的注意事项


RT-Thread定时器在使用的时候,为了确保定时器能正常运行,应该有以下注意事项:


1、应该根据不同的应用场合,设置系统的时钟节拍,时钟节拍一般是1 – 100ms,时钟节拍的数值越小,表示频率越快,系统的额外开销就会越大。


2、在系统节拍的中断函数里面,会不断检查硬件定时器链表,如果有定时器超时时间到达,就会去处理相应的超时任务,超时后就会从链表中移除这个定时器,对于周期性定时器,再次启动时会重新加入链表。


3、定时器链表的跳表算法,是用空间来换取时间的,所以要根据实际的硬件资源设置跳表的层数,表示跳表层数的宏定义RT_TIMER_SKIP_LIST_LEVEL默认为1


4、RT-Thread的定时器精度,是由时钟节拍来决定的,定时器的超时时间必须是时钟节拍的整数倍,在Cortex-M系列的单片机中,可以使用systick的工作机制来获得一个低于时钟节拍的延时。


5、低于时钟节拍的高精度延时的示例函数,如下图所示。


嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论 (0)
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 164浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 139浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 124浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 92浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 56浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 127浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 117浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 96浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 189浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 171浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦