手机访问卡顿,看如何使用内存加速存储访问速度!

SSDFans 2024-12-18 07:28


本篇文章是首尔大学发表在FAST 2023上的文章。随着闪存容量的增加,逻辑地址到物理地址的映射表项也相应增加。映射表项通常存放在设备控制器中的SRAM来加速访问。然而由于成本问题SRAM一直无法增长,这使得其中只能存放很少量的数据表项。而为了解决这一问题,现有工作使用部分主机端内存(high performance booster, HPB)来缓存映射表项。然而文章中发现,现有的HPB管理策略并不能够很好的提升用户体验。这是因为现有的管理策略通常可能会将前台应用的表项剔除。而为了解决这一问题,本文设计提出HPBvalve技术来尽量缓存前台应用的映射表项。通过在搭建的真实平台上的验证,该技术能够很好的提升用户体验。

背景

当主机下发请求时会附上逻辑地址,UFS收到请求后会在闪存转换层(FTL)进行地址转换,将逻辑地址转换为物理地址,如图1所示。记录从逻辑地址到物理地址映射信息的称之为映射表项。而为了加速这一过程,UFS中通常配备一个较小的SRAM用于缓存常用的映射表项。然而随着闪存的迅速发展,SRAM空间越发不够存储经常访问的表项。例如对于1TB的UFS设备配备512KB SRAM,则只有0.0005%的表项能够缓存在其中。显然这远远不够。而为了缓解这一问题,现有工作提出使用部分主机内存(HPB)来缓存映射表项。相较于SRAM来说,主机能够提供较大的内存,从而缓存更多的映射表项来加速访问。

动机

为了展示映射表项对用户体验的影响,文章中在搭建的平台上做了很多实验。平台将在实验部分介绍。其中设备容量为1TB,设备SRAM为512KB,HPB大小为256MB。OPTIMAL为所有映射表项都命中在设备SRAM的情况。应用启动时间和加载时间作为衡量用户体验的指标。

图2展示了映射表项访问确实对用户感知延迟的影响。从中我们可以得出三个结论:

  1. 通过对比OPTIMAL和其他两个可以看出,启动延迟和加载延迟都得到了较为明显的提升。从绝对值来看,分别是220ms和183ms,已经是用户可感知的延迟。

  2. 通过比较UFS和UFS+HPB可以发现,尽管HPB能够提供较大的容量,然而现有的管理策略并不能够利用其很好的提升用户体验。

  3. HPB从主机端借用了较多的内存反而会使得主机内存压力增加。

图3中进一步分析了HPB中前台应用和后台应用中映射表项的命中情况。从图中我们可以看出前台应用的映射表项缺失情况比后台应用更加严重,这是因为:1)传统HPB采用基于计数的取映射表项策略。而后台应用比前台应用会下发更多的读请求,这使得后台应用的映射表项的读取计数通常比前台应用的高。因此会更倾向于将后台应用的映射表项取到HPB中。2)传统HPB采用基于时间的映射表项剔除策略。然而当用户切换应用并使用一段时间后,刚才使用应用的映射表项也将会被剔除。这导致用户再切换回来后映射表项缺失,影响用户体验。

图4和图5分析了HPB无法很好预测哪些表项会被使用的原因。这是因为在应用启动的时候,会有大量随机的I/O请求,并且覆盖很大的逻辑地址空间。这使得很难提高表项命中率。

图6探索了HPB大小对用户体验的影响。从中我们可以发现最佳的HPB大小随着应用不同而不同。同时随着HPB的大小增加,前台应用下发的读取请求也在增加。这是因为HPB分配过多内存导致内存压力过大,会杀掉一些应用。当这些应用(cold state)之后再被访问的时候不仅启动时间增加,而且需要下发更多的读取请求,如表1所示。图7展示的是随着HPB大小的增加,越来越多的应用会被杀掉。

设计

为了解决上述问题,文章中提出了HPBvalve(Hvalve),如图8所示。Hvalve包含了五个部分。其中app-detector和mem-detector分别用于判断应用是否为前台应用、应用状态变化和内存压力情况。FG profiler维护了近期使用应用会访问的映射表项,用于预取映射表项。L2P manager用于单独管理前台应用的映射表项。HPB regulator用于根据内存压力情况调整HPB大小,避免过多应用被杀掉。

1. 前台/后台应用识别Hvalve在bio结构体中创建新的变量UID,用于记录下发请求所属的应用。当bio创建请求的时候,UID也会集成在请求中。同时app detector会通过安卓活动任务管理器(android activity task manager)来检测是否有新的前台应用启动。如果有一个新的前台应用启动时,将该应用的UID传递给HPB。这样HPB可以将该UID与请求中携带的UID进行比较,从而判断应用是否为前台应用。

2. L2P management:Hvalve维护了三个LRU链表,分别用户记录活跃前台应用、非活跃前台应用和后台应用的映射表项。当新的前台应用启动时,会将之前的前台应用表项降级到非活跃前台应用链表中。当需要剔除表项的时候优先提出后台应用表项,然后是非活跃前台应用表项。而前台应用表项不会被剔除。

3. Hvalve缓存策略:1)其中依旧延续传统的基于访问计数的方式来缓存经常被访问的表项。2)对于前台应用缓存表项未命中时,立即将该表项取到HPB中。3)根据FG profiler预取表项。

4. 前台应用分析和预取:图9展示了FG-profiler中记录的信息。FG-profiler记录近期访问应用的映射表项。同时根据app detector基于安卓活跃任务管理器发出的应用启动开始和启动结束信号,可以将映射表项分为启动表项和运行表项。当一个应用被切换为前台应用的时候,hvalve会先判断该应用对应的映射表项是否记录在FG-profiler中。如果在,则将记录的映射表项预取到HPB中,以加速访问,如图10所示。

5. HPB大小动态调整:mem-detector时刻监测LMKD。当内存不足激活LMKD杀进程时,mem-detector会将将要杀掉的进程UID传送给HPB-regulator。HPB-regulator会判断该应用在FG-profiler中是否有记录,如果没有说明不是近期访问过的应用,则直接杀掉。如果有,则会根据LMKD需要释放内存的大小剔除HPB中的表项。优先提出后台应用表项,然后是非活跃应用表项。如果剔除之后内存仍然不足,则需要重新唤醒LMKD选取应用杀掉。该过程如图11所示。

实验

该文章为了探寻HPB不同方面的影响,自己搭建了一个平台,如图12所示。其中使用高性能SSD作为主要存储,同时简单实现了HPB的管理策略,来进行映射表项的存取。应用场景也如图12所示。

性能:性能提升如图13所示。Hvalve相较于UFS和UFS+HPB均有所改善,并且接近OPTIMAL的场景。

表项未命中模式:图14展示了前台应用表项缺失随着运行时间的分布。可以看出Hvalve很好的控制住了在应用刚运行时候的缺失率高的问题。

命中率:图15展示了Hvalve的命中率情况。相较于HPB-only,Hvalve很好的提升了应用冷启动时的映射表项命中率。

HPB大小动态调整效果:图16展示了Hvalve动态调整对前台应用的影响。可以看出Hvalve相较于传统的HPB管理策略减少了被杀掉的应用,同时很好的保护了高优先级的应用,减少了应用下发的读请求数量。图17可以观察到HPB大小动态调整的过程。

总结

为了提高HPB的使用效率从而提升用户体验,本文在自己搭建的平台上深入的分析了当前HPB管理策略存在的问题,并在此基础上设计了Hvalve。Hvalve通过对前台应用映射表项的识别和管理,提高了前台应用的访问速度,提升用户体验。同时根据内存压力动态调整HPB大小,避免导致内存压力过大而杀掉过多的应用,影响用户体验。实验结果显示,Hvalve提升了用户前台应用表项的命中率,减少了被杀掉的应用,提升了用户体验。

SSDFans AI+IOT+闪存,万物存储、万物智能、万物互联的闪存2.0时代即将到来,你,准备好了吗?
评论 (0)
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 133浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 161浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 256浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 235浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 261浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 217浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 241浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 189浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 114浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 257浏览
我要评论
0
0