前线芯思路|图腾柱PFC的传导电磁干扰对策指南,mark~

原创 安森美 2024-12-16 18:59

本文作者:Neo Chen,安森美应用工程经理 


随着开关电源的广泛应用,开关电源的整流和滤波过程会产生大量的高次谐波,导致电流波形严重畸变,进而引起电磁干扰(EMI)和电磁兼容(EMC)问题。因此,功率因素校正(PFC)技术应运而生。


PFC技术旨在校正电流波形,使其与电压波形保持同相,从而提高功率因子和减少谐波干扰。另一方面,电源供应器通常需要通过CISPR32或是EN55032的标准。这些标准的主要目的是确保信息技术设备在运行过程中不会对其他设备造成有害干扰,同时也能抵抗外界的电磁干扰。CISPR32/EN55032测试项目分成两类,传导干扰以及辐射干扰。


此外,根据产品使用环境的类型将标准分为两类,主要用于住宅环境的任何设备都必须符合B类限制;所有其他设备必须符合A类限制。图1为传导干扰限值曲线。


图1.CISPR32/EB55032传导干扰限值曲线


早期PFC技术主要使用桥式整流器加上升压型PFC转换器(Boost PFC Converter)。由于桥式整流器的存在,在转换器工作时始终有两个二极管同时导通。在高功率应用中,这个固定损耗由于电流提升而增加,影响了效率的近一步提升。


现今电源供应器市场为因应全球减碳活动,已经将效能目标设定为更高效率、减少损失、节省能源、降低成本、提高系统容量为主。图腾柱PFC由于其结构简单且元器件数量少,可以在较小的体积内提供更高的功率密度。同时,宽能隙半导体材料如氮化镓(GaN)和碳化硅(SiC)开始导入设计,这些材料具有更低的导通电阻和更快的开关速度,进一步提高了效率和功率密度。因此,图腾柱PFC被广泛应用于各种高效能和高功率密度的电源系统中,如服务器电源、5G通信电源、电动车充电器以及工业电源。


图腾柱PFC由两个半桥开关构成,其中一个半桥作为整流桥,负责电容负端至输入端地回流路径,使用普通低RDS(ON)的MOSFET即可。另一组半桥负责Boost converter 的充放电切换,可以由SiC/GaN FET 等反向恢复时间短的功率晶体组成。


如图2所示,电路的工作原理主要分为正半周和负半周两个部分。正半周(VAC > 0):当Q1导通时,电感电流上升,电感进行储能。接着Q1断开,电感开始释放能量,电感电流下降。此时,Q2的体二极管在死区时间内顺向导通,接着,Q2导通,减少体二极管造成的功率损耗。正半周时,SD2为常开状态,SD1为常闭状态。负半周(VAC < 0):当Q2导通时,电感电流上升,电感进行储能。接着Q2断开,电感开始释放能量,电感电流下降。此时,Q1的体二极管在死区时间内顺向导通,接着,Q1导通,减少体二极管造成的功率损耗。正半周时,SD1为常开状态,SD2为常闭状态。


图2.图腾柱PFC工作原理


然而,图腾柱PFC在提高效率和功率密度的同时,也面临着电磁干扰(EMI)问题。其中,共模噪声是该拓朴的主要干扰源。通常是由功率组件的高速切换产生的高频噪声,这种噪声可以透过寄生电容耦合到框架接地(frame ground, FG),从而产生共模噪声。


如图3所示,Q1的高频开通和关断动作产生高压变化dv/dt,成为噪声源。噪声电流流经寄生电容Cp,然后流过LISN。为了降低噪声电流流过LISN, 可在FG与PFC输出电容的接地端(GND)加入电容器Cfg,该电容可视为Y电容器,为开关噪声提供低阻抗。


图3.高频开关切换造成的噪声源及其传导路径


另一方面,如文献所述[1], 在图腾柱PFC电路中,一个典型的控制问题是AC电压过零点切换。当AC电压处在正半周期时,且接近AC过零点时,Q1为主开关,由于输入电压很小,所以其占空比会达到接近100%(Q2占空比接近0),而SD1在此半周期一直导通。


当AC电压过渡到负半周期时,Q2为主开关,由于输入电压很小,所以其占空比接近为100%(Q1占空比接近0),此阶段SD2会由关断变为导通,则当Q2一导通时,SD1的寄生输出电容Coss会很快放电,除了产生反向电感电流尖峰,由于剧烈的高压变化dv/dt而产生了共模噪声。图4(a)展示了过零点的共模噪声的传导路径。SD1两端电压作为噪声源,是一个方波且幅度为输出电压同时与AC输入电压频率相同。


图4.零交越点产生的噪声源及其传导路径


为了解决传统MOSFET开关的反向恢复性能较慢,通常在图腾柱PFC的设计上,会选用宽能隙功率晶体。安森美(onsemi)在宽能隙功率晶体(iGaN)上,将多种电力电子器件整合到一个氮化镓芯片上,以实现集成650V氮化镓FET和氮化镓驱动器于单芯片中。


集成化的关键是能减小延迟和消除寄生电感,大幅降低与开关频率相关的损耗。如前所述,为了降低图腾柱PFC的共模噪声,首先可以针对高频切换的所产生的噪声做调整。安森美的iGaN可以针对导通时的dv/dt斜率做调整。图6(a)为NCP58922周边线路,透过调整串联于VDR的Ron电阻,可以改变NCP58922导通时的dv/dt斜率,同时降低共模噪声。


图5. iGaN可透过Ron来调整导通时dv/dt的斜率


另一方面,为了改善零交越点所产生的共模噪声,在慢速臂的晶体并联电容器C3和C4(如图7),可以降低电压变化dv/dt从而抑制共模噪声[2]。添加电容器后过零点附近的噪声源,不仅通过电容Cfg,也通过电容C3、4。由于Cfg的容值远低于C3, C4,因此流经Cfg的噪声电流较小。

图6.在慢速臂的晶体并联电容器C3和C4


除此之外,另一种降低慢速臂在AC零交越点时dv/dt斜率,是透过缓启动的方式,慢慢增加快速臂的占空比。图8为安森美的图腾柱PFC控制器(NCP1680, NCP1681)针对零交越点的控制机制(open loop pulses)[3]。当AC通过零交越点后,从较小的占空比开始转换SD1上Vds跨压。接着,逐渐增加占空比的时间,使Vds从400V降至0V,同时完成慢速臂的换相控制。NCP1680以及NCP1681提供设计者4种open loop pulses的选择,可根据慢速臂的输出电容(Coss)参数或是PFC电感量来选择适合的open loop pulses。


图7.NCP1680/1的零交越点的控制机制(open loop pulses)


安森美提供了一个500W高效率和高功率密的适配器方案(EVBUM2875)。如图8所示,该方案使用 图腾柱PFC控制器(NCP1681)和LLC控制器(NCP13994)完成游戏笔记本电脑适配器方案,同时搭配iGaN (NCP58921)将适配器的整体尺寸缩小到183mm*93mm*30mm,功率密度提升至16W/inch^3。


图8.500W游戏适配器方案


此外,该方案使用前面所提供EMI的对策,(1)在FG到PFC bulk 接地端之间加入Y电容(Cfg), (2) 调整iGaN的导通电阻(3) 并联电容于慢速臂(C3, C4), (4) 选择合适的open loop pulses来降低零交越点的电压斜率。图9为Conducted EMI的测试结果,可满足CLASS B的规格。


图9. Conducted EMI测试结果


参考数据

[1] Baihua Zhang, Qiang Lin, Jun Imaoka, Masahito Shoyama, Satoshi Tomioka, and Eiji Takegami, “EMI Prediction and Reduction of Zero-Crossing Noise in Totem-Pole Bridgeless PFC Converters,” Journal of Power Electronics, vol. 19, no. 1, pp. 278-287, Jan 2019.

[2] Baihua Zhang, Kewei Shi, Qiang Lin, Gamal M. Dousoky, Masahito Shoyama, and Satoshi Tomioka, “Conducted Noise Reduction of Totem-pole Bridgeless PFC Converter Using GaN HEMTs,” 2015 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1-5, 2015.

[3] ON Semi, “NCP1681 Datasheet”.



⭐点个星标,茫茫人海也能一眼看到我⭐

别着急走,记得点赞在看

安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论 (0)
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 128浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 148浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 166浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 98浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 202浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 152浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 193浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 210浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 73浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦