在上一期《电源设计避坑(上)》中,我们讨论了电源设计中的电源功率、稳定性、纹波控制以及尖峰和浪涌的问题,并结合实际案例提出了相应的应对措施。接下来,我们将继续探索电源设计的其他关键考量因素。
首先是使电网电压瞬间下降,俗称的压降。特别在电源容量小(电力变压器容量小)和大功率电机启动的情况下,电压下降更大,不仅使该电机启动困难,还影响到电源线路上其他电机的正常运行。
实际案例:某工业机器人生产线在启动时,机器人经常出现启动缓慢或无法启动的问题。经过调查和分析,发现电源在机器人启动时无法提供足够的启动电流,导致机器人无法正常启动。
实际案例:某医院在电力中断后,重要医疗设备无法正常运行。经过调查发现,该医院未配备备用电源,导致重要设备失去电力供应。
实际案例:某服务器在运行高负载任务时出现性能下降的问题。经过调查和分析,发现电源在设计时预留的余量过小,导致电源过载而影响服务器的性能。
优化电源电路设计可提高电源的效率和稳定性。通过合理设计电路结构、选择合适的元件和采取散热措施等手段,可降低电源内部的功耗和温升,提高电源的可靠性和寿命。
为了及时发现电源故障或异常情况,可在电源系统中增加监控装置。通过实时监测电源的电压、电流、温度等参数,可及时发现异常并采取相应的处理措施,避免对设备造成损坏。
定期对电源进行维护和检查可及时发现潜在的问题并采取相应的措施。例如,可定期清理电源内部的灰尘和污垢,检查电源线路是否松动或老化,以确保电源的稳定运行。
针对电源方面的知识和技能进行培训和知识更新,可提高开发人员和维护人员的专业水平和工作效率。通过了解电源的基本原理、常见问题及解决方案,他们可更好地应对各种电源相关的问题,减少产品降成带来的不良后果。