改正版:LCD复位电路正激变换器工作原理及特点

原创 松哥电源 2024-12-14 11:56

LCD电感电容二极管无损复位电路工作原理是变压器初级励磁电感Lm两端并联复位电容Cr,开关管S关断后,Lm在激磁过程中存储的能量全部转移到Cr,完成变压器的磁通复位。然后,Cr与一个复位电感Lr串联,Lr与Cr组成谐振回路,将Cr从Lm获得的能量,再全部转移到Lr。如果Cr足够大,可以看作电压源VCr。最后,Lr连接到输入电源Vin,Lr从Cr获得的能量全部返回到Vin,实现无损耗的磁通复位。复位过程中,能量转移的路径为:Lm-->Cr-->Lr--> Vin

开关管S关断时,Cr与Lm并联,完成能量转化和磁通复位;开关管S导通时,开关节点SW(开关管漏极、变压器和Cr的共同连接点)连接到输入电源的地,如果将Lr的上端与Cr的左端连接,Lr的下端与输入电源的地连接,正好组成闭合的谐振回路。然后,Lr的上端与Cr的左端一起连接到输入电源的正端,不但符合Lm与Cr并联的连接关系,同时也满足Lr连接到Vin的电路状态,如图1所示。

图1  复位Cr与Lr的连接方式

图1中的电路有如下问题:

(1)开关管S导通时,输入电源将正向直接加到Cr两端,Vin直接对Cr充电;同时,输入电压Vin直接加到Lr,对Lr的激磁,输入电源额外向Cr、Lr提供能量,影响变压器磁通复位工作。

2)开关管S导通时,CrLr谐振电流到峰值后下降到0,会继续反向谐振,导致Lr的能量无法回馈到输入端,磁通复位电路无法正常工作。

(a) 输入电源向Cr与Lr影提供能量

(b) Cr与Lr反向谐振

图2  输入电源对Cr与Lr影响

二极管具有单向流过电流的特性,因此,可以根据电流方向实现元件相互之间的隔离。开关管关断后变压器磁通复位时,iLm对Cr充电电流方向从右向左;开关管导通时,Cr对Lr的激磁电流方向也就是Cr放电电流方向从左向右,Cr的水平支路要流过二个方向的电流,因此,二极管不能串联在Cr的水平支路。

如果在Lr的上端及Cr的左端的共同连接点与输入电源Vin之间串联一个二极管D3,D3的方向上,这样就可以消除问题1的影响。同时,D3既不会影响变压器磁通复位过程中iLm对Cr充电(D3的方向与iLm对Cr充电电流的方向一致),也不会影响Lr向输入电源回馈能量(D3的方向与Lr向输入电源回馈能量的电流方向一致),如图3所示。

图3  复位电路增加二极管

Lr串联一个二极管D4,D4的方向上,这样就可以消除问题2的影响。同时,D4既不会影响开关管导通期间Cr中存储的能量向Lr转换(D4的方向与Cr对Lr激磁的电流方向一致),也不会影响Lr向输入电源回馈能量(D4的方向与Lr向输入电源回馈能量的电流方向一致)。另外,D4限制Lr与Cr只能完成正半周期的谐振过程(Lr与Cr谐振电流只能顺时针流动,无法反向,不能逆时针流动),防止在异常情况下,Lr对Cr反向充电。

1、LCD复位工作过程

完整复位电路与工作波形,如图4、图5所示,LCD电感电容二极管无损复位电路正激变换器整个工作过程有7个状态。

图4  LCD复位电路

图5  LCD复位电路工作波形

(1)状态1:t0-t1阶段

(a)  iLm为负向电流

(b) iLm变为正负向电流

(c) VCr电压反向

图6 工作状态1

在t=t0时刻,开关周期开始,开关管S导通,输出整流管D1导通,输出续流管D2关断,变压器初级电压为Vin,Lm正向激磁,励磁电感电流iLm从初始负电流开始,随时间绝对值降低,从第1象限向第3象限过渡。

其中,ILm(0)为iLm的初始值。在t0-t1中间某时刻,iLm绝对值降低到0,iLm从负电流变为正电流,继续正向上升。

输出电感两端为正电压,输出电感正向激磁,电感电流iL随时间线性增加。

其中,IL(min)为iL的初始值。

Cr、Lr通过D4与导通的开关管S形成谐振回路,VCr初始电压值为-VCr(max),电压方向左负右正,Lr初始电流为0。Cr与Lr在谐振过程中,Lr首先激磁,存储能量,iLr增加,方向从下到上;Cr放电,VCr降低,释放在变压器磁通复位过程中存储的能量。VCr放电降低到0后,iLr增加到最大值,然后,Cr与Lr继续谐振,iLr谐振降低,VCr反向增加,电压方向左正右负。

得到:

其中:

Cr与Lr谐振完成半个周期Tr/2时间后,在t=t1时刻,iLr谐振降低到0,VCr反向增加到正的最大值VCr(max)

(2)状态2:t1-t2阶段

图7 工作状态2

iLr谐振降低到0后,由于二极管D4的限制,Cr与Lr无法继续进行反向谐振,Cr与Lr谐振停止。D1保持导通,D2保持关断,iLm、iL在状态1的基础上继续激磁增加。

在t=t2时刻,开关管S关断。

(3)状态3:t2-t3阶段

图8 工作状态3

开关管关断后,D1保持导通,D2保持关断,Lm与开关节点的寄生电容Coss谐振,开关节点电压VDS随着时间谐振上升,iLm继续谐振增加。初级电流等于变压器初级励磁电感的激磁电流与输出负载反射电流之和,此电流非常大,因此,这个阶段时间非常短,谐振过程可以等效为变压器初级励磁电感的激磁电流与输出负载反射电流之和对复位电容充电,VDS随着时间线性上升,iLm随着时间线性上升。

开关节点的寄生电容为开关管输出寄生电容Coss、变压器初级寄生电容与复位二极管的寄生电容之和,Coss远大于其它电容之和因此,开关节点的寄生电容近似等于Coss

电容Coss充电,可以得到:

在t=t3时刻,VDS增加到Vin-VCr(max),D3导通。

(4)状态4:t3-t4阶段

图9 工作状态4

D3导通,开关管关断,D1保持导通,D2保持关断,Lm与Coss+Cr谐振,Coss充电,Cr放电,VDS继续谐振上升,iLm继续谐振增加。初级电流等于变压器初级励磁电感的激磁电流与输出负载反射电流之和,此电流非常大,因此,谐振过程可以等效为变压器初级励磁电感的激磁电流与输出负载反射电流之和对Coss充电、Cr放电,VDS随着时间线性上升,VCr随着时间线性降低,iLm随着时间缓慢上升。

Coss充电、Cr放电,可以得到:

在t=t4时刻,VDS增加到Vin,VN1=0V,VCr=0V,D1关断,D2导通续流,iLm达到最大值ILm(max)

(5)状态5:t4-t5阶段

图10 工作状态5

VDS增加到Vin,D1关断后,输出负载电流不再反射到变压器的初级,Lm与Cr+Coss继续谐振,Lm两端变为负压,Coss继续充电,Cr反向充电,VDS随着时间继续谐振上升,VCr随着时间从0方向谐振增加上升,电压方向左负右正,iLm谐振下降。

谐振过程中:

谐振周期为:

D2导通续流,输出电压Vo反向加在输出电感的两端,输出电感去磁,iL随着时间线性下降。后面阶段,输出回路都维持输出电感去磁的过程,一直持续到下一个开关周期开始。

这一阶段时间起点从ton开始,当t=ton,iL=IL(max),得到:

经过Tro/4时间,在t=t5时刻,VDS谐振增加到最大值Vin+VCr(max),iLm谐振降低到0,iLm=0,D3自然关断。

(6)状态5:t5-t6阶段

图11 工作状态6

iLm下降到0后,D3关断,Lm与Coss谐振,VDS随着时间谐振降低,VDS初始电压为:Vin+VCr(max),变压器初级电压VN1为负值,iLm随着时间谐振反向增加。

谐振过程与状态3类似,Coss放电:

在t6时刻,VDS谐振降低到Vin时,iLm反向增加到最大值-ILm(0)

(7)状态6:t6-t7阶段

图12 工作状态7

VDS谐振下降到Vin后,VN1=0,VN2=0,VDS有继续谐振下降的趋势,如果VDS下降到略低于Vin,导致变压器初级绕组电压VN1大于0,次级绕组电压也大于0,D1导通,初级电流非常小,不足以提供输出负载电流,D2继续保持导通,此时,D1、D2同时导通,将变压器初级、次级绕组电压钳位在0,iLm保持负向最大值-ILm(0)不变。VDS维持在Vin,VN1=0。

在t=t7时刻,下一个开关周期开始,开关管导通。

2、LCD复位主要元件参数设计

在状态5期间,变压器初级励磁电感完成磁通复位,必须满足以下条件:

可以得到:

在状态1期间,钳位电感与钳位电容完成半个周期的谐振过程,必须满足以下条件:

可以得到:

Lr与Cr比值越大,特征阻抗越大,钳位电感的峰值电流越小,开关管的导通损耗越小

图13  LCD复位仿真波形

正激变换器LCD复位,励磁电感会进行轻微的反向激磁,工作在第3象限,即:iLm变为负值且其绝对值较小。这种复位方式优点是开关管的电压被钳位,电压尖峰降低,开关管电压应力降低。变压器励磁电感以及漏感的能量通过复位电路返回到输入电源,没有损耗,系统的效率高。缺点是需要一个额外的电感Lr,Lr与Cr谐振电流增加开关管的导通损耗,影响系统效率。增加一个额外二极管,除了产生导通损耗,还会产生漏电流损耗,也会增加成本,要选择漏电流小的二极管管。系统工作开关频率高时,Lr与Cr谐振电流增加,损耗增加,同时,需要选择合适电感值,保证电路正常工作。占空比不能高于0.5,因此,这种复位方式主要用于中等功率、频率不太高的应用。

松哥电源 松哥电源,致力于提供一个电力电子及电源系统设计与交流的空间,聚集背景相类、价值观相同的电子工程师的智慧,探讨理论,关注细节,评说经验,分享电力电子及电源系统设计的快乐。
评论 (0)
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 143浏览
  • 文/郭楚妤编辑/cc孙聪颖‍伴随贸易全球化的持续深入,跨境电商迎来蓬勃发展期,物流行业 “出海” 成为不可阻挡的必然趋势。加之国内快递市场渐趋饱和,存量竞争愈发激烈。在此背景下,国内头部快递企业为突破发展瓶颈,寻求新的增长曲线,纷纷将战略目光投向海外市场。2024 年,堪称中国物流企业出海进程中的关键节点,众多企业纷纷扬帆起航,开启海外拓展之旅。然而,在一片向好的行业发展表象下,部分跨境物流企业的经营状况却不容乐观。它们受困于激烈的市场竞争、不断攀升的运营成本,以及复杂的国际物流环境,陷入了微利
    华尔街科技眼 2025-04-09 15:15 49浏览
  •   物质扩散与污染物监测系统软件:多领域环境守护的智能中枢   北京华盛恒辉物质扩散与污染物监测系统软件,作为一款融合了物质扩散模拟、污染物监测、数据分析以及可视化等多元功能的综合性工具,致力于为环境科学、公共安全、工业生产等诸多领域给予强有力的技术支撑。接下来,将从功能特性、应用场景、技术实现途径、未来发展趋势等多个维度对这类软件展开详尽介绍。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这
    华盛恒辉l58ll334744 2025-04-09 14:54 53浏览
  • ## DL/T645-2007* 帧格式:* 帧起始字符:68H* 地址域:A0 A1 A2 A3 A4 A5* 帧起始字符:68H* 控制码:1字节* 主站:* 13H:请求读电能表通信地址* 11H:请求读电能表数据* 1CH:请求跳闸、合闸* 从站:* 91H:正常应答读电能表* 9CH:正常应答跳闸、合闸* 数据域长度:1字节* 数据域:DI0 DI1 DI2 DI3* 发送方:每字节+33H* 接收方:每字节-33H* 数据标识:* 电能量* 最大需量及发生时间* 变量* 事件记录*
    四毛打印店 2025-04-09 10:53 25浏览
  •   卫星图像智能测绘系统:地理空间数据处理的创新引擎   卫星图像智能测绘系统作为融合卫星遥感、地理信息系统(GIS)、人工智能(AI)以及大数据分析等前沿技术的综合性平台,致力于达成高精度、高效率的地理空间数据采集、处理与应用目标。借助自动化、智能化的技术路径,该系统为国土资源管理、城市规划、灾害监测、环境保护等诸多领域输送关键数据支撑。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉北京五木恒润卫星图像智能测绘系统。这些成功案例为卫星
    华盛恒辉l58ll334744 2025-04-08 16:19 69浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 178浏览
  • 文/Leon编辑/侯煜‍就在小米SU7因高速交通事故、智驾性能受到质疑的时候,另一家中国领先的智驾解决方案供应商华为,低调地进行了一场重大人事变动。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)4月4日上午,有网友发现余承东的职务发生了变化,华为官网、其个人微博认证信息为“常务董事,终端BG董事长”,不再包括“智能汽车解决方案BU董事长”。余承东的确不再兼任华为车BU董事长,但并非完全脱离华为的汽车业务,而是聚焦鸿蒙智行。据悉,华为方面寻求将车BU独立出去,但鸿蒙智行仍留在华为终端BG部门。
    华尔街科技眼 2025-04-09 15:28 44浏览
  • HDMI从2.1版本开始采用FRL传输模式,和2.0及之前的版本不同。两者在物理层信号上有所区别,这就需要在一些2.1版本的电路设计上增加匹配电路,使得2.1版本的电路能够向下兼容2.0及之前版本。2.1版本的信号特性下面截取自2.1版本规范定义,可以看到2.1版本支持直流耦合和交流耦合,其共模电压和AVCC相关,信号摆幅在400mV-1200mV2.0及之前版本的信号特性HDMI2.0及之前版本采用TMDS信号物理层,其结构和参数如下:兼容设计根据以上规范定义,可以看出TMDS信号的共模电压范
    durid 2025-04-08 19:01 138浏览
  •   物质扩散与污染物监测系统:环境守护的关键拼图   一、物质扩散原理剖析   物质扩散,本质上是物质在浓度梯度、温度梯度或者压力梯度等驱动力的作用下,从高浓度区域向低浓度区域迁移的过程。在环境科学范畴,物质扩散作为污染物在大气、水体以及土壤中迁移的关键机制,对污染物的分布态势、浓度动态变化以及环境风险程度有着直接且重大的影响。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这些成功案例为物质
    华盛恒辉l58ll334744 2025-04-09 11:24 26浏览
  •   卫星图像智能测绘系统全面解析   一、系统概述   卫星图像智能测绘系统是基于卫星遥感技术、图像处理算法与人工智能(AI)技术的综合应用平台,旨在实现高精度、高效率的地理空间数据获取、处理与分析。该系统通过融合多源卫星数据(如光学、雷达、高光谱等),结合AI驱动的智能算法,实现自动化、智能化的测绘流程,广泛应用于城市规划、自然资源调查、灾害监测等领域。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星图像智能测绘系统
    华盛恒辉l58ll334744 2025-04-08 15:04 74浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦