超图计算+目标检测,性能新SOTA!清华发布Hyper-YOLO:用超图捕捉高阶视觉关联

OpenCV学堂 2024-12-12 22:32



点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 新智元 授权


【新智元导读】Hyper-YOLO是一种新型目标检测方法,通过超图计算增强了特征之间的高阶关联,提升了检测性能,尤其在识别复杂场景下的中小目标时表现更出色。
YOLO(You Only Look Once)系列是目标检测领域中的主流方法,以其高效性和实时性而著称。然而,现有的YOLO模型在处理跨层特征融合和复杂的高阶特征关系时存在局限,无法充分捕捉跨位置和跨尺度的复杂特征关联。

为了解决这一难点,清华大学提出了Hyper-YOLO:一种基于超图计算的目标检测方法。Hyper-YOLO首次将超图计算集成到目标检测网络,对特征图中的复杂高阶关联进行建模,实现了高阶信息的跨层次和跨位置传播。

作者列表:Yifan Feng, Jiangang Huang, Shaoyi Du, Shihui Ying, Junhai Yong, Yipeng Li, Guiguang Ding, Rongrong Ji, Yue Gao.
论文地址:https://arxiv.org/abs/2408.04804
Github仓库:https://github.com/iMoonLab/Hyper-YOLOv1.1

零代码平台:http://hyperyolo.gaoyue.org:28501/#/predict

使用超图计算结合YOLO,性能在各种规模模型中都达到顶尖,在COCO数据集上的表现明显优于其他模型,尤其是对中小目标提升更加显著。其中,相比于最新的YOLOv9-T、YOLO11-S,同规模的Hyper-YOLO分别实现了2%和1%的平均精度提升。

目标检测的困境

近年来,随着深度学习的快速发展,YOLO(You Only Look Once)系列模型凭借其高效的单阶段检测架构,在目标检测领域中脱颖而出。YOLO模型通过将目标检测简化为回归问题,在保持高精度的同时实现了实时检测能力,受到了广泛关注和应用。

然而,随着应用场景的复杂化,现有的YOLO模型在处理跨层次特征融合和高阶特征关系时暴露出了一定的局限性。

下图展示了几个典型的案例 (YOLOv8为例)。在打网球的场景中,现有模型将网球拍误判为了棒球棒;在冲浪的场景中,现有模型将冲浪板误判为了风筝。这种错误正是由于现有的模型难以捕捉视觉对象之间的复杂关系。

因而,不同目标间的高阶语义关联推理限制了目标检测的性能。

高阶关联的建模方法

为了解决这些问题,学术界一直在探索更加先进的模型设计与优化方法。其中,超图计算作为一种能够捕捉多方关系的数学工具,逐渐被应用于包括社交网络、脑网络等复杂数据结构分析中。

超图覆盖了多种关联,是复杂关联计算的有效方法。在Hyper-YOLO中,作者首次将超图计算引入目标检测领域,以实现视觉高阶语义关联的建模与学习。

模型效果

该工作在COCO数据集上进行了丰富的实验。Hyper-YOLOv1.1提供了3种规模的版本(Tiny, Small , Medium),在对比实验中,均明显优于最新的YOLO模型。

其中,Tiny版本的平均精度(mAP)指标相比于YOLOv8、YOLOv9、YOLO11的同规模版本分别提升3.0%、2.0%、0.8%;Small版本的mAP指标相比于YOLOv8、YOLOv9、YOLO11的同规模版本分别提升3.1%、1.2%、1.0%。此外,对于骨干网络、Kernel大小、特征增强策略、超图构建策略的消融实验证明了所提出的方法的先进性。

以下两图为YOLOv8、Hyper-YOLO在目标检测和实例分割任务下的可视化结果。

下图为使用高阶关联学习对特征图增强前后的可视化图(通过HyperC2Net前后的特征图)。

上述实验结果证明,Hyper-YOLO具有目前最先进的检测性能,尤其对场景中不同视觉对象的高阶关系具有更准确的理解能力。

Hyper-YOLO零代码平台

智能媒体与认知实验室还推出了一款基于Hyper-YOLO的零代码训练平台。在该平台上,无需配置环境、修改配置文件等繁琐操作,既可以一键上传图像利用训练好的Hyper-YOLO模型进行推理,也可以上传数据集自定义训练、直观展示训练过程。(推荐使用PC端chrome/Edge浏览器)

项目链接:http://hyperyolo.gaoyue.org:28501/#/predict

项目支持自定义训练。
在训练完成后,可以对验证数据进行推理和评估,并可视化检测结果:

方法概述

超图计算

超图是图的推广形式,是一种高效的特征表示学习方法。在超图中,一条超边可以连接多个顶点,从而表示对象之间的高阶关联。超图神经网络作为超图计算的核心方法,通常包含以下几个步骤:

1. 从原始数据构建超边

2. 从顶点到超边的消息聚合(超边卷积)

3. 从超边到顶点的消息分发(节点卷积)
超图神经网络由于其灵活性和丰富的表达能力,广泛应用于社交网络分析、生物信息学、推荐系统等领域,能够更有效地建模和分析复杂的多层次数据关联。
Hyper-YOLO整体架构
Hyper-YOLO 继承了典型的 YOLO 架构,骨干网络通过引入混合聚合网络(MANet)来增强特征提取能力,从五个特征层中获取信息。
颈部网络(Neck)采用基于超图的跨层次和跨位置表示网络(HyperC2Net),通过超图计算集成多尺度特征,实现高阶信息的跨层次和跨位置传播,从而生成适用于目标检测的语义特征,显著提升模型的检测性能。
基于超图的跨层次和跨位置表示网络
在传统YOLO模型中,颈部为连接骨干网络和预测头之间的部分,通常采用类似PANet的结构,承担多尺度特征提取与融合的功能。虽然这类结构能够进行一定的多尺度特征融合,但直接的信息交互局限在相邻层之间。
而基于超图的跨层次跨位置表示网络(Hypergraph-Based Cross-Level and Cross-Position Representation Network, HyperC2Net)则突破了这一瓶颈,主要过程如下:
1. 超图构建:HyperC2Net将来自不同层次的特征图进行拼接,形成跨层次的视觉特征集合。然后通过计算特征点之间的距离,构建一个超图,其中每个超边连接多个顶点,代表多个特征点之间的高阶关系。超图能够表达跨层次和跨位置的复杂关系,而非简单的相邻层信息融合。
2. 超图卷积:在构建超图后,HyperC2Net利用超图卷积在特征图上进行消息传播。通过这种方式,不同位置和层次的特征点可以相互传递信息,建模特征点之间的高阶关联,增强了模型对于复杂场景中目标的识别能力。特别是在跨位置特征交互方面,相比于传统的卷积操作,超图卷积能够捕捉到更广泛和复杂的特征关联。

总结

Hyper-YOLO通过引入超图计算方法,突破了传统YOLO模型在多尺度特征融合上的局限。超图的高阶关联建模能力使得HyperC2Net能够在跨层次和跨位置的信息传播中表现出色,不仅在特征点之间实现高效的信息聚合和分发,还通过跨层次的消息传递显著提升了目标检测性能,尤其在处理复杂场景和多目标检测任务中表现优异。

参考资料:
[1] Feng Y, Huang J, Du S, et al. Hyper-YOLO: When visual object detection meets hypergraph computation[J]. arXiv preprint arXiv:2408.04804, 2024. 
[2] Feng Y, You H, Zhang Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 3558-3565. 
[3] Gao Y, Feng Y, Ji S, et al. HGNN+: General hypergraph neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3): 3181-3199.

OpenCV4系统化学习


深度学习系统化学习

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 78浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 80浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 114浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 88浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 66浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 87浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 88浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 74浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 115浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 79浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 66浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 46浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦