车联网连接及通信原理

谈思实验室 2024-12-11 17:57

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯


01

V2X介绍

车用无线通信技术(Vehicle to Everything, V2X)是实现车与车(V2V)、车与路(V2I)、车与人(V2P)、车与网(V2N)相连接的新一代信息通信技术。

V2X 通过将人、车、路、云等交通参与要素有机地联系在一起,构建一个智慧的交通体系。整个V2X 系统可以分为云端、路端与车载端:

云端

V2X 云平台,实现大数据及人工智能算法智能分析、交通调度优化、高精度定位、车辆状态管理、车辆在线升级、信息服务等;

路侧端

包括路侧通信单元RSU(Road Side Unit)、路测计算单元(MEC),路侧感知单元(雷达、摄像头、交通信号灯与指示牌等环境信息);

车载端

完成BSM消息的上报、V2X 消息的接收与解析、CAN 数据的读取与解析、消息的展示与提醒、保障信息安全。

02

车载连接网络

汽车内部

网络是将众多电子控制单元 (ECU) 和传感器相互连接在一起,旨在促进实现高级驾驶员辅助系统(ADAS)更先进的功能。目前,大多数汽车搭载 60 至 100 个传感器。在未来五至十年内,传感器数量预期还要翻番。换而言之,传感器的数量将超过现代汽车中集成的 ECU 的数量。之所以构建这个日益复杂的网络,是因为迫切需要提高对不同汽车系统的控制质量。例如,电荷交换、燃料喷射、处理后废气都需要更高的控制级别,以遵守未来的排放和能效法规。

汽车外部

网络意味着将汽车集成到通过无线通信和互联网建立的现代数字数据流中。

  • 让汽车与智能手机等移动设备无缝连接,以便在车内传输信息和运行应用。

  • 让汽车自身成为物联网 (IoT) 的一部分,提供基于云或互联网服务的信息。这样做的目的是拓宽驾驶员的视野范围和信息量,远超出驾驶员的视线和有限背景信息,从而提供更出色的驾驶员支持,并且全面改善交通流量。

03

车联网通信

车联网应用呈现迫切的需求,车联网由多个系统和网络组成,它们分别为环境(V2X)、云(远程通信)、驾驶员/乘客(信息娱乐)提供异构连接。

V2X:连接到外部环境

如图 1 所示,车联网可以出色地融入围绕物联网开发的生态系统中。  大家通常首先会想到车对车 (V2V)  连接,提供车道堵塞或自动刹车警报,但在多方面互连基础设施和移动设备的驱动下,车联网将很快成为智能城市的一部分。

设想一下,交通灯根据流量模式自动变化,或者对通勤需求做出响应,能够搜索多个街区寻找停车点,这些均可通过物联网实现。

图1  异构连接

V2X 能够感知外部环境,在车联网中实现下一代驾驶自动化和实时监控。V2X 当前有两种主要标准:

电气与电子工程师学会 (IEEE) 802.11p 标准

802.11p 标准定义了行车环境无线接入 (WAVE),包括汽车和路边单元 (RSU)中的专用短距离通信 (DSRC) 设备。它是对流行的 802.11 无线(Wi-Fi) 网络标准的修订。DSRC 在 5.9 千兆赫 (GHz) 频段中工作,带宽为 75 兆赫兹 (MHz),范围大约为 1,000 米。

蜂窝车对万物 (C-V2X) 蜂窝网络长期演进 (LTE)

C-V2X 用于支持主动安全系统,针对车对车 (V2V)、车对基础设施 (V2I) 以及车对行人 (V2P) 的情况,使用 5.9 GHz 智能交通系统 (ITS) 频段中的低延迟直接传输技术来侦测和交换信息,从而提高态势感知,同时无需订阅蜂窝网络服务或任何网络辅助技术。第三代合作伙伴计划 (3GPP) 第 14 版规范对 C-V2X 作出了定义,其中包括基于 PC5 的直接通信,且制定了通往 5G 新无线电(5GNR) 的明确发展路径。

基于 IEEE 802.11p 的产品已经上市。现在很多汽车已经采用了IEEE 802.11p 技术。C-V2X 刚开始进入汽车领域,在当今的蜂窝网络生态系统的强大支持下,C-V2X(图2)很可能快速成熟。

图2 C-V2X 通信

汽车安全是 V2X 的常见应用,包括:

  • V2V:例如防碰撞

  • V2I:例如动态交通信号

  • V2P:例如向行人和骑行者发出安全警报

  • V2N:车对网络。例如实时交通和天气、定制导航以及其他云服务

V2X 还将利用 V2V 通信,实现更高效的车队管理和队列行驶。

表1  DSRC 和 C-V2X对比

V2X 被用于增强 ADAS 的功能。ADAS 通常采用摄像头和雷达传感器,让驾驶员能够看到汽车周边大约 200 米范围的情况。V2X 应用可以共享和协调信息,将 ADAS 的有效范围扩展至数千公里。

车载安全系统和传感器等 LiDAR 技术(包括激光、扫描仪、光检测器接收器、GPS),也与 V2X 配合使用,成为实现自动驾驶汽车的关键推动因素。

远程通信:汽车与云进行通信

远程通信提供高带宽连接,用于物联网集成和云服务。远程通信早已在商用汽车中使用,帮助企业监控和优化各个运营要素,例如:

  • 燃油油耗

  • 汽车维护

  • 车队使用

  • 汽车定位

  • 最佳路线

  • 驾驶员行为

未来车联网中的远程通信将涵盖所有蜂窝网络标准,以提供 1 GB/秒(Gbps) 的处理能力,快速赶上领先智能手机功能。

Gigabit LTE 将会用于众多应用中,从智能手机和笔记本电脑到便携式热点和汽车。Gigabit LTE 指的是 LTE 等级 16 (CAT16 LTE) 下行数据流,在 3GPP 版本 12 中推出。当今的系统将 Gigabit LTE 与 LTE 等级13 上行链路配对,以实现高达 150 Mbps 的上传速度。CAT16 LTE 实现了 5G 低延迟和更高可靠性,采用 256 正交幅度调制 (QAM)、3x20兆赫兹 (MHz) 载波聚合 (CA) 和 4x4 多路输入/多路输出 (MIMO) 技术。对于每个 LTE 等级,QAM、CA 和 MIMO 技术以不同配置结合使用,从而达到额定最大速度。通过这种技术组合达到的实际额定下行链路速度不足 1 Gbps,但也非常接近这个值,979 MB/秒 (Mbps)。

汽车中的远程通信单元是汽车的主要数据连接,随着汽车制造商试图配合使用智能手机服务,需要的数据量也将快速增长。移动电信运营商和汽车 OEM 将会寻求从传输到汽车的远程通信数据中盈利,这将提高远程通信系统的复杂性。图 3 显示远程通信蜂窝前端模块 (FEM)。

与智能手机相比,远程通信的关键优势是天线性能。在汽车远程通信中,天线通常位于鲨鱼鳍中,在金属车身外部。而智能手机位于汽车内部,这意味着手机天线在金属车身内部。这样会降低天线性能,因为汽车的作用相当于一个法拉第笼,接地金属屏蔽层包围了设备,从而排除静电和电磁影响。为了减少这种法拉第笼效应,汽车制造商将所有远程通信天线(包括蜂窝天线)都安装在鲨鱼鳍中。这使用户能够将智能手机连接到汽车,从而消除法拉第笼效应。

图3  远程通信蜂窝 FEM

汽车制造商可能必须使用双用户识别模块 (SIM) 双通 (DSDA) 技术,以支持多家运营商。

信息娱乐:用户与汽车互动

使用当今的信息娱乐系统,乘客在汽车外部和内部都能进行连接。信息娱乐应用包括娱乐(包括高清和卫星无线电)、导航和搜索等。实现这些应用的关键协议包括 Wi-Fi 和蓝牙(图4)。

汽车中的 Wi-Fi 热点将是主要连接,实现类似于当前家庭 Wi-Fi 网络的多用户接口。Wi-Fi 将通过车联网中的远程通信单元来传输 1 Gbps数据,以供所有乘车者使用。

图4  信息娱乐连接

04

汽车互联和数据

汽车正从主要用于交通的独立对象转变为先进的互联网连接端点,通常能够进行双向通信。实现互联自动驾驶汽车有两种主要方法,图5显示了将基于IEEE 802.11p 标准和LTE 蜂窝基础设施C-V2X两种方法相互混合和连接。最终,它们都要连接到 LTE/5G 基础设施网络,只是采用的方式不同。

图5  C-V2X 和 IEEE 802.11p 连接

互联汽车数据包括一系列的传感器和使用数据(图6),例如:

  • 汽车定位:GPS 坐标、速度限制、加速计、指南针定向。

  • 动力传动系统指标:驾驶状态、发动机每分钟转数 (RPM)、发动机温度、燃油液位和故障代码。

  • 汽车环境状态:车厢/外部温度、雨水检测和湿度。

  • 定制传感器:摄像头、第三方跟踪服务(包括有效载荷温度、位置、速度和破坏性冲击)。

  • 空中下载 (OTA):汽车公司通过 OTA 为信息娱乐、安全系统等提供软件更新,无需前往服务中心。

图6  互联汽车数据和服务

来源:我想我思

 end 

 精品活动推荐 

 专业社群 

部分入群专家来自:

新势力车企:

特斯拉、合众新能源-哪吒、理想、极氪、小米、宾理汽车、极越、零跑汽车、阿维塔汽车、智己汽车、小鹏、岚图汽车、蔚来汽车、吉祥汽车、赛力斯......

外资传统主流车企代表:

大众中国、大众酷翼、奥迪汽车、宝马、福特、戴姆勒-奔驰、通用、保时捷、沃尔沃、现代汽车、日产汽车、捷豹路虎、斯堪尼亚......

内资传统主流车企:

吉利汽车、上汽乘用车、长城汽车、上汽大众、长安汽车、北京汽车、东风汽车、广汽、比亚迪、一汽集团、一汽解放、东风商用、上汽商用......

全球领先一级供应商:

博世、大陆集团、联合汽车电子、安波福、采埃孚、科世达、舍弗勒、霍尼韦尔、大疆、日立、哈曼、华为、百度、联想、联发科、普瑞均胜、德赛西威、蜂巢转向、均联智行、武汉光庭、星纪魅族、中车集团、赢彻科技、潍柴集团、地平线、紫光同芯、字节跳动、......

二级供应商(500+以上):

Upstream、ETAS、Synopsys、NXP、TUV、上海软件中心、Deloitte、奇安信、为辰信安、云驰未来、信大捷安、信长城、泽鹿安全、纽创信安、复旦微电子、天融信、奇虎360、中汽中心、中国汽研、上海汽检、软安科技、浙江大学......

人员占比


公司类型占比


更多文章

不要错过哦,这可能是汽车网络安全产业最大的专属社区!

关于涉嫌仿冒AutoSec会议品牌的律师声明

一文带你了解智能汽车车载网络通信安全架构

网络安全:TARA方法、工具与案例

汽车数据安全合规重点分析

浅析汽车芯片信息安全之安全启动

域集中式架构的汽车车载通信安全方案探究

系统安全架构之车辆网络安全架构

车联网中的隐私保护问题

智能网联汽车网络安全技术研究

AUTOSAR 信息安全框架和关键技术分析

AUTOSAR 信息安全机制有哪些?

信息安全的底层机制

汽车网络安全

Autosar硬件安全模块HSM的使用

首发!小米雷军两会上就汽车数据安全问题建言:关于构建完善汽车数据安全管理体系的建议

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论
  • 更多生命体征指标风靡的背后都只有一个原因:更多人将健康排在人生第一顺位!“AGEs,也就是晚期糖基化终末产物,英文名Advanced Glycation End-products,是存在于我们体内的一种代谢产物” 艾迈斯欧司朗亚太区健康监测高级市场经理王亚琴说道,“相信业内的朋友都会有关注,最近该指标的热度很高,它可以用来评估人的生活方式是否健康。”据悉,AGEs是可穿戴健康监测领域的一个“萌新”指标,近来备受关注。如果站在学术角度来理解它,那么AGEs是在非酶促条件下,蛋白质、氨基酸
    艾迈斯欧司朗 2025-02-27 14:50 452浏览
  •           近日受某专业机构邀请,参加了官方举办的《广东省科技创新条例》宣讲会。在与会之前,作为一名技术工作者一直认为技术的法例都是保密和侵权方面的,而潜意识中感觉法律有束缚创新工作的进行可能。通过一个上午学习新法,对广东省的科技创新有了新的认识。广东是改革的前沿阵地,是科技创新的沃土,企业是创新的主要个体。《广东省科技创新条例》是广东省为促进科技创新、推动高质量发展而制定的地方性法规,主要内容包括: 总则:明确立法目
    广州铁金刚 2025-02-28 10:14 127浏览
  • 美国加州CEC能效跟DOE能效有什么区别?CEC/DOE是什么关系?美国加州CEC能效跟DOE能效有什么区别?CEC/DOE是什么关系?‌美国加州CEC能效认证与美国DOE能效认证在多个方面存在显著差异‌。认证范围和适用地区‌CEC能效认证‌:仅适用于在加利福尼亚州销售的电器产品。CEC认证的范围包括制冷设备、房间空调、中央空调、便携式空调、加热器、热水器、游泳池加热器、卫浴配件、光源、应急灯具、交通信号模块、灯具、洗碗机、洗衣机、干衣机、烹饪器具、电机和压缩机、变压器、外置电源、消费类电子设备
    张工nx808593 2025-02-27 18:04 138浏览
  • RGB灯光无法同步?细致的动态光效设定反而成为产品客诉来源!随着科技的进步和消费者需求变化,电脑接口设备单一功能性已无法满足市场需求,因此在产品上增加「动态光效」的形式便应运而生,藉此吸引消费者目光。这种RGB灯光效果,不仅能增强电脑周边产品的视觉吸引力,还能为用户提供个性化的体验,展现独特自我风格。如今,笔记本电脑、键盘、鼠标、鼠标垫、耳机、显示器等多种电脑接口设备多数已配备动态光效。这些设备的灯光效果会随着音乐节奏、游戏情节或使用者的设置而变化。想象一个画面,当一名游戏玩家,按下电源开关,整
    百佳泰测试实验室 2025-02-27 14:15 152浏览
  •         近日,广电计量在聚焦离子束(FIB)领域编写的专业著作《聚焦离子束:失效分析》正式出版,填补了国内聚焦离子束领域实践性专业书籍的空白,为该领域的技术发展与知识传播提供了重要助力。         随着芯片技术不断发展,芯片的集成度越来越高,结构也日益复杂。这使得传统的失效分析方法面临巨大挑战。FIB技术的出现,为芯片失效分析带来了新的解决方案。它能够在纳米尺度上对芯片进行精确加工和分析。当芯
    广电计量 2025-02-28 09:15 164浏览
  • 1,微软下载免费Visual Studio Code2,安装C/C++插件,如果无法直接点击下载, 可以选择手动install from VSIX:ms-vscode.cpptools-1.23.6@win32-x64.vsix3,安装C/C++编译器MniGW (MinGW在 Windows 环境下提供类似于 Unix/Linux 环境下的开发工具,使开发者能够轻松地在 Windows 上编写和编译 C、C++ 等程序.)4,C/C++插件扩展设置中添加Include Path 5,
    黎查 2025-02-28 14:39 173浏览
  • 在物联网领域中,无线射频技术作为设备间通信的核心手段,已深度渗透工业自动化、智慧城市及智能家居等多元场景。然而,随着物联网设备接入规模的不断扩大,如何降低运维成本,提升通信数据的传输速度和响应时间,实现更广泛、更稳定的覆盖已成为当前亟待解决的系统性难题。SoC无线收发模块-RFM25A12在此背景下,华普微创新推出了一款高性能、远距离与高性价比的Sub-GHz无线SoC收发模块RFM25A12,旨在提升射频性能以满足行业中日益增长与复杂的设备互联需求。值得一提的是,RFM25A12还支持Wi-S
    华普微HOPERF 2025-02-28 09:06 199浏览
  • 2020年,世界经济论坛发布了《将来工作报告》,预言了人工智能 (AI)、机器人和自动化将在五年内对劳动力市场带来反天性的变化。最震撼人心的预测是:85亿个工位将消失,97亿个新工位将被创造。这个信息给我们提出了一些骂烈的疑问:AI究竟会消灭哪些工作?管理者的规划依然重要吗?AI会代替我们的管理之路吗?AI不会替代管理者,会进一步增强他们随着AI在机器学习、自然语言处理和预测分析方面的进步,许多人对AI接管事务表示担心。但研究显示,大多数情况下,AI将作为工具与管理者协同完成任务,而不是替换他们
    优思学院 2025-03-01 12:22 41浏览
  • 在2024年的科技征程中,具身智能的发展已成为全球关注的焦点。从实验室到现实应用,这一领域正以前所未有的速度推进,改写着人类与机器的互动边界。这一年,我们见证了具身智能技术的突破与变革,它不仅落地各行各业,带来新的机遇,更在深刻影响着我们的生活方式和思维方式。随着相关技术的飞速发展,具身智能不再仅仅是一个技术概念,更像是一把神奇的钥匙。身后的众多行业,无论愿意与否,都像是被卷入一场伟大变革浪潮中的船只,注定要被这股汹涌的力量重塑航向。01为什么是具身智能?为什么在中国?最近,中国具身智能行业的进
    艾迈斯欧司朗 2025-02-28 15:45 282浏览
  • DeepSeek的风还吹到了TV圈。去年,人工智能领域迎来了重大突破,然而对大多数人而言,它依旧是个颇为模糊的概念。即便是如ChatGPT这样的产品,给人最直接的感受也仅仅是一个相较于Siri更为智能的语音交互工具。直至今年,DeepSeek的惊艳亮相,人们真正感受到了生成式人工智能在实际应用中的价值。在这股浪潮的推动下,电视厂商们也纷纷跟上了脚步。2月11日,海信电视宣布正式接入DeepSeek,并支持满血R1和V3版本自由切换,成为行业首个搭载深度思考智能体的电视品牌。长虹电视紧随其后,宣布
    刘旷 2025-03-03 09:55 40浏览
  • 压力传感器是指能感受压力信号,并能按照一定的规律将压力信号转换成可用的电信号的器件或装置。压力传感器通常由压力敏感元件和信号处理单元组成,按不同测压方法,压力传感器可分为表压传感器、差压传感器和绝压传感器;按不同测压原理,压力传感器又可分为常见的压阻式压力传感器、电容式压力传感器、扩散硅压力传感器、蓝宝石压力传感器与陶瓷压力传感器等。作为工业自动化与智能化的关键器件,压力传感器在各类工业设备中扮演着不可或缺的角色,其通过精确感知和转换物理压力信号,为工业物联网(IIoT)构建起了高效精确的“压力
    华普微HOPERF 2025-03-03 10:19 57浏览
  • 一、VSM的基本原理震动样品磁强计(Vibrating Sample Magnetometer,简称VSM)是一种灵敏且高效的磁性测量仪器。其基本工作原理是利用震动样品在探测线圈中引起的变化磁场来产生感应电压,这个感应电压与样品的磁矩成正比。因此,通过测量这个感应电压,我们就能够精确地确定样品的磁矩。在VSM中,被测量的样品通常被固定在一个震动头上,并以一定的频率和振幅震动。这种震动在探测线圈中引起了变化的磁通量,从而产生了一个交流电信号。这个信号的幅度和样品的磁矩有着直接的关系。因此,通过仔细
    锦正茂科技 2025-02-28 13:30 128浏览
  • 振动样品磁强计是一种用于测量材料磁性的精密仪器,广泛应用于科研、工业检测等领域。然而,其测量准确度会受到多种因素的影响,下面我们将逐一分析这些因素。一、温度因素温度是影响振动样品磁强计测量准确度的重要因素之一。随着温度的变化,材料的磁性也会发生变化,从而影响测量结果的准确性。因此,在进行磁性测量时,应确保恒温环境,以减少温度波动对测量结果的影响。二、样品制备样品的制备过程同样会影响振动样品磁强计的测量准确度。样品的形状、尺寸和表面处理等因素都会对测量结果产生影响。为了确保测量准确度,应严格按照规
    锦正茂科技 2025-02-28 14:05 174浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦