工程师为你讲解,如何看懂时序图!

21ic电子网 2021-01-19 00:00
出品  21ic论坛  gaoyang9992006

网站:bbs.21ic.com


有很多传感器手册给了我们时序图,我们只要按照时序图操作就行了,还有一些是标准接口,例如SPI,IIC,UART,这些可以利用硬件提供的收发器通信,还有一些我们没有足够的接口,或者没有对应的接口与之通信,我们可以按照手册提供的时序图,利用IO来完成读写操作。完成的思路是模块化编程思想,将问题逐个分解。由大化小,实现小的功能。

比如常用的单线协议的温湿度传感器DHT21。


可以看到一共40BIT,并注意到是以8BIT为单位的,因此我们可以先规划成每次读取8BIT,读取5次,完成读取。


开始读取时候,假设传感器是空闲的,那么这个时候传感器就是在高电平,主控想要发起读取,要给传感器一个读取的信号,这个信号就是先拉低至少500us,然后拉高20到40us。
因此这个时候,主控的IO要处于输出状态,我们可以输出1,也可以输出0,先输出1,然后输出0,将0持续的事件大于500us,然后输出1
保持20us到40us。

为了靠谱,我这里拉低持续2ms,拉高持续30us,先设置IO的模式为输出模式。
 Write_AM2301_PIN_Init();

拉低这个端口,即输出0
 RESET_AM2301_PIN();


保持2ms,这样就满足最少500us了。
 HAL_Delay(2);

然后拉高它,输出1
 SET_AM2301_PIN();

保持30us
 rt_hw_us_delay(30);

接下来传感器就该响应这个请求了,这个时候就要让主控读取信号的模式了

读取相应,因为接下来器件会主动拉低总线80us,然后再拉高80us.
我们先切换主控的这个IO到输入模式,进行读取。然后判断
器件准备好的这个拉低拉高信号。

第一步,切断刀输入模式,准备读取IO信号
 Read_AM2301_PIN_Init(); Sensor_AnswerFlag=0;

判断是否传感器拉低了总线,拉低表示传感器要发送准备好信号了
 if(Read_AM2301_PIN()==GPIO_PIN_RESET) { Sensor_AnswerFlag=1; Sys_CNT=0;


等待准备好的拉低段80us结束,并计数,看看是否超时。
 while(Read_AM2301_PIN()==GPIO_PIN_RESET) { if(++Sys_CNT>3000) { Sensor_ErrorFlag=1; return 0; } } Sys_CNT=0;

如果准备拉低状态顺利结束,再看看准备信号的拉高状态是否OK
 while(Read_AM2301_PIN()==GPIO_PIN_SET) { if(++Sys_CNT>3000) { Sensor_ErrorFlag=1; return 0; } }

一切OK的话,就该读取实际的传感器输出值了。这个时候要写入到存储传感器40BIT数值的变量里了
每次读取8BIT,一共5此,所以用个循环。方到准备好的变量数组里
 for(i=0;i<5;i++) { AM2301_Data<i> = Read_AM2301_Data();</i><i> }</i>

接下来我们还要实现什么呢,当然是基本的读取8BIT的操作了。



根据这个时序图,可以看出来什么是1,什么是0.
我们看到总线在传输数据时候,拉低都是50us,只有拉高长短不同,长的表示1,短的表示0.
因此我们读取每一位时候,只要先判断是不是低电平或者高电平,就行了。
在低电平时候我们等待,当高电平到来我们判断是否大于28us,因为26us~28us表示0,70us标志1.
所以我们找一个介于28到70us之间的判断阈值。
比如我以30us作为阈值,当低电平结束后,我延时30us,如果是0,这个时候高电平肯定结束了,
如果是1,高电平还在持续。
因此我通过这个思路判断是0还是1.
因为我要读取是8BIT,因此我用循环8次的操作。

unsigned char Read_AM2301_Data(void){ unsigned char i,cnt,buffer,tmp;//要读取8次 for (i = 0; i < 8; i++) { cnt=0;//判断低电平是否结束 while(!Read_AM2301_PIN()) { if(++cnt>=3000) break; }//低电平结束后,进入高电平,开始计时30us rt_hw_us_delay(30); tmp=0;//如果此时还是高电平,那么肯定是大于28us,确定是1来了,赋值1 if(Read_AM2301_PIN()) tmp=1; cnt=0;//等待高电平结束,号进入下一位的读取 while(Read_AM2301_PIN()) { if(++cnt>=2000) break; }//移位写入刚刚得到的1个BIT buffer<<=1; buffer|=tmp; } return buffer;}

接下来实现什么呢?
实现读取IO状态和写高低电平。
unsigned char Read_AM2301_PIN(void){ return HAL_GPIO_ReadPin(AM2301_PORT, AM2301_PIN);}
void SET_AM2301_PIN(void){ HAL_GPIO_WritePin(AM2301_PORT, AM2301_PIN,GPIO_PIN_SET);}
void RESET_AM2301_PIN(void){ HAL_GPIO_WritePin(AM2301_PORT, AM2301_PIN,GPIO_PIN_RESET);}

这里我直接调用的HAL库函数,其实这么做是方便移植,如果你要去其他芯片下使用,你只需要实现这3个函数以及延时函数就行了。逻辑顺序无需修改。最后奉上源码
#include "stm32f0xx_hal.h"
//读传感器 端口位定义,可修改//*#define AM2301_PIN GPIO_PIN_10#define AM2301_PORT GPIOA#define AM2301_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()#define AM2301_GPIO_CLK_DISABLE() __HAL_RCC_GPIOA_CLK_DISABLE()

unsigned char Sensor_AnswerFlag; //收到起始标志位unsigned char Sensor_ErrorFlag; //读取传感器错误标志unsigned int Sys_CNT;unsigned char AM2301_Data[5]={0x00,0x00,0x00,0x00,0x00};
void Read_AM2301_PIN_Init(void){ AM2301_GPIO_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pin = AM2301_PIN; HAL_GPIO_Init(AM2301_PORT, &GPIO_InitStruct);}
void Write_AM2301_PIN_Init(void){ AM2301_GPIO_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pin = AM2301_PIN; HAL_GPIO_Init(AM2301_PORT, &GPIO_InitStruct);}
unsigned char Read_AM2301_PIN(void){ return HAL_GPIO_ReadPin(AM2301_PORT, AM2301_PIN);}
void SET_AM2301_PIN(void){ HAL_GPIO_WritePin(AM2301_PORT, AM2301_PIN,GPIO_PIN_SET);}
void RESET_AM2301_PIN(void){ HAL_GPIO_WritePin(AM2301_PORT, AM2301_PIN,GPIO_PIN_RESET);}
unsigned char Read_AM2301_Data(void){ unsigned char i,cnt,buffer,tmp; for (i = 0; i < 8; i++) { cnt=0; while(!Read_AM2301_PIN()) { if(++cnt>=3000) break; } rt_hw_us_delay(30); tmp=0; if(Read_AM2301_PIN()) tmp=1; cnt=0; while(Read_AM2301_PIN()) { if(++cnt>=2000) break; } buffer<<=1; buffer|=tmp; } return buffer;}
unsigned char Read_Sensor(void){ unsigned char i; Write_AM2301_PIN_Init(); RESET_AM2301_PIN();// rt_thread_mdelay(2); HAL_Delay(2); SET_AM2301_PIN(); rt_hw_us_delay(30); SET_AM2301_PIN();
Read_AM2301_PIN_Init(); Sensor_AnswerFlag=0; if(Read_AM2301_PIN()==GPIO_PIN_RESET) { Sensor_AnswerFlag=1; Sys_CNT=0; while(Read_AM2301_PIN()==GPIO_PIN_RESET) { if(++Sys_CNT>3000) { Sensor_ErrorFlag=1; return 0; } } Sys_CNT=0; while(Read_AM2301_PIN()==GPIO_PIN_SET) { if(++Sys_CNT>3000) { Sensor_ErrorFlag=1; return 0; } } for(i=0;i<5;i++) { AM2301_Data[i] = Read_AM2301_Data(); } } else { Sensor_AnswerFlag=0; } return 1;}



本文系21ic论坛网友gaoyang9992006原创




21ic电子网 即时传播最新电子科技信息,汇聚业界精英精彩视点。
评论
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦