综述:近红外光谱快速分析技术的应用研究进展

MEMS 2024-12-08 00:01

近红外光谱检测技术具有非侵入性、灵敏度高、响应速度快和效率高等优势,已经被广泛应用于农业、食品、临床医学检查和药物研发等领域。但其目前面临的瓶颈之一是难以实现实时在线检测、器件小型化和变深度检测。

据麦姆斯咨询报道,河南工业大学的科研团队重点总结了近红外光谱检测技术在食品分析、农业生产、生物医学、药物分析等领域的研究进展,详细分析了近红外检测过程中光谱检测器件的组成、光谱采集模式、光谱数据处理以及检测模型,阐述了数据处理方式对检测精度和检测结果的影响;最后,讨论了近红外光谱检测技术的发展方向,并对其应用前景进行了展望。相关研究内容以“近红外光谱快速分析技术的应用研究进展”为题发表在《化学通报》期刊上。

近红外光谱检测技术在食品分析领域的应用

随着人们对食品安全问题的重视,食品检测技术越来越受到学术界和企业界的关注。近红外光谱技术作为一种非侵入性、快速、高效的分析手段,不仅可以用于食品的成分分析,而且在不破坏检测样品的情况下迅速获取食品的大量信息,例如水果的糖度、可溶性物质、酸度,粮食的淀粉含量、霉变、表皮损伤,蔬菜风味、质构、安全品质等。因此,基于近红外光谱的检测技术已成为食品检测行业的一项关键工具,为食品生产者和监管机构提供了一种可靠的手段。

2018年,Jiang等研究人员采用近红外光谱法并结合CC-PLSR-RBFNN(相关系数法、偏最小二乘回归、径向基函数神经网络)校准模型测定玉米中的淀粉含量。近年来,中国小麦脱氧雪腐镰刀菌烯醇(DON)的污染问题严峻,因此,小麦的菌类识别和清除显得至关重要。这也对近红外光谱检测技术提出了更高的要求。He等研究人员将可见光⁃近红外光谱(Vis-NIR)技术与计算机视觉相结合,实现了对正常、受DON污染的小麦籽粒在线区分和检测。如图1(a)所示,装置采用卤钨灯作为光源,漫反射探头将漫反射信号传递至光纤光谱仪(波长范围为380 - 1050 nm/950 - 1690 nm)。2019年,Wang等研究人员基于近红外光谱技术提出了一种非破坏性的食品定量分析方法。该方法利用宽带NIR-LED器件(波长范围为650 - 1200 nm)和FLS920荧光分光光度计测量食品的透射光谱,如图1(b)所示。2020年,Huang等研究人员通过测量不同种类水果的近红外吸收来检测其新鲜度。在检测的过程中,将水果样品放入积分球内同时使用光纤耦合光谱仪记录样品的反射近红外光谱,如图1(c)所示。2020年,Han等研究人员提出了一种基于近红外光谱技术无损鉴定黑心马铃薯的方法。实验采用50 W的卤素灯作为光源,并使用PG2000光谱仪(光谱范围为368 - 1039 nm)采集样品的透射光谱,如图1(d)所示。

图1 (a)动态检测系统原理图;(b)实验装置图;(c)近红外光谱食品分析装置图;(d)检测装置

2021年,Cui等研究人员基于近红外光谱技术对苹果的糖含量进行检测,并研究了苹果含糖量对透射强度的影响。其采用自制的pc-LED器件作为近红外光源,如图2(a)所示。2020年,Qin等研究人员基于近红外光谱技术来预测冻猪肉样品中总挥发性碱性氮(TVB-N)含量。如图2(b)所示,实验采用宽带卤钨灯作为光源,反射探头将获取的漫反射信号传递至NIR Quest 512型光谱仪(光谱范围为899.20 - 1724.71 nm)。2021年,郭志明等研究人员采用515 - 870 nm范围内的近红外光谱信号对苹果品质(可溶性固形物含量、硬度和维生素C含量)进行检测。实验采用自制的近红外检测设备进行光谱采集和结果分析,如图2(c)所示。

图2 (a)实验装置;(b)便携式可见光⁃近红外光谱系统;(c)手持式检测终端结构示意图

综上,在近红外检测过程中,通过分析近红外光谱和食品中化学成分相互作用产生的光谱特征,可以快速准确地识别出食品的成分和性质。目前,基于近红外检测技术已经展开的检测研究有猪肉、水果、花生、小麦和玉米等食品。但是,大多数研究中采用的光源为卤钨灯和LED,检测结果严重依赖预测模型,检测仪器的分辨率、信噪比等条件对品质分析结果的影响也有待进一步研究。

近红外光谱检测技术在生物医学领域的应用

近红外光谱检测技术在生物医学领域逐渐展现出巨大的应用潜力,为科研和医学工作者提供了一种无创、快速的检测手段,被广泛应用于生物体的血糖浓度、血红蛋白浓度或生物组织的病理检测,极大地促进了疾病早期诊断、血糖浓度实时监测、生物组织检测等发展。

2018年,Zhang等研究人员基于可见/近红外透射光谱技术研发了一种快速、无损的血红蛋白浓度检测装置。该装置采用360 - 2500 nm波长的卤素灯作为光源,透射的光谱信号经光纤传输至光谱仪(波长范围分别为299 - 1160 nm和1041 - 1772 nm),如图3(a)所示。对光谱数据进行处理后建立血红蛋白浓度PLSR预测模型(相关系数为0.97)。2018年,Liang等研究人员采用中国人民解放军总医院开发的基于近红外光谱技术的便携式设备(如图3(b)所示)来检测患者颅内血肿。该设备采用激光二极管作为近红外光源,近红外光经人体组织反射后由光纤采集并传输至硅探测器,获得的光谱信号经处理后在屏幕上显示检测结果。

图3 (a)血红蛋白检测装置原理图;(b)便携式颅内出血近红外检测仪

2019年,Bruyne等研究人员探索了近红外光谱检测技术检测DN相关生化特征的潜力,并采用1700 - 2165 nm的近红外光谱对肾脏组织切片进行了研究。如图4(a)所示,实验使用近红外光谱仪采集肾脏组织切片在1038 - 2354 nm的光谱数据,采集的数据经分析后得出检测结果。2020年,Yu等研究人员基于近红外光谱技术开发出一款便携式血糖监测系统。如图4(b)所示,在检测的过程中,使用自制仪器采集指尖血液的光谱信息(光谱范围900 - 1700 nm)。2022年,Bhattacharya等研究人员采用近红外光谱技术制备出一款便携式检测仪器,其通过测定人血清白蛋白含量来预防急性缺血性中风。该仪器采用波长范围为730 - 750 nm的LED(峰值波长为740 nm)作为光源,同时使用光电二极管(光谱范围为170 - 2600 nm)采集近红外光谱信号,如图4(c)所示。犯罪现场的血液样本识别对于刑事调查至关重要。2022年,Yuan等研究人员基于700 - 940 nm范围内的近红外光谱信息在体外鉴定兔子的妊娠囊和其他腹部组织。如图4(d)所示,光谱采集装置包括Vis-NIR光谱仪(在漫反射模式下收集350 – 1000 nm的光谱)和Ocean View软件,另外采用10 W的卤素灯作为光源。光谱信息经标准正态变量(SNV)降噪处理后采用逐次投影法选择特征波长。

图4 (a)近红外光谱检测装置示意图;(b)检测设备俯视图;(c)近红外检测仪器的射线图;(d)光谱数据采集示意图

近红外光谱检测技术在农业领域的应用

近红外检测技术可对土壤、农作物、种子等进行现场检测和分析,从而为生产者及时提供生产物质信息,帮助调整生产策略,推动农业现代化的发展和提高农产品的质量。此外,科研育种院所和粮食深加工企业对作物籽粒的品质鉴定、作物贸易、加工和存储也有极高的要求,研究快速、高效和高精度的近红外检测技术对作物产前、产后精深加工具有重要意义。

植物病害是农业产量和质量的重要问题之一,因此检测植物病害是提高植物生产质量的关键任务。2019年,Atanassova等研究人员利用带有光纤探针的USB4000光谱仪检测黄瓜叶片是否含有白粉菌,如图5(a)所示。研究发现,健康、无症状和症状明显植株在540 - 680 nm处的反射光谱差异较大。同时该方法对黄瓜白粉菌感染的预测准确率超过78%。2019年,智利Ribera-Fonseca等研究人员提出一种基于可见光/近红外光谱技术的方法来估算蓝莓植株的水分状况。如图5(b)所示,实验采用两盏500 W的卤素灯对蓝莓叶片进行平行照射,并通过PS-100光谱仪辐射测量蓝莓叶片在400 - 1000 nm波段内的光谱信息,同时对光谱信息进行分析。研究发现,基于可见光/近红外光谱指数的反射率与蓝莓植物的水分状态参数呈显著正相关,为蓝莓植株的水分检测提供了新方向。

图5 (a)检测装置;(b)VIS/NIR光谱仪图片;(c)FT-NIR光谱仪采集近红外光谱的原理图

茶叶水分含量的可视化对茶叶种植和茶园灌溉起着关键作用。2019年,Sun等研究人员建立近红外高光谱成像系统来实现茶叶水分含量的可视化检测。如图6(a)所示,该系统采用150 W的光纤卤素灯作为照明单元,并采用波长范围为870 - 1780 nm的CCD摄像机和光谱分辨率为2.8 nm的成像光谱仪作为数据采集装置。2023年,Zhao等研究人员采用MicroNIR 1700便携式近红外光谱仪(分辨率为12.5 nm)对桑叶嫩度进行检测,如图6(b)所示。其采集桑叶在890 - 1669 nm波段的光谱信息,采集的数据采用无信息变量消除选择特征波长后建立标定模型。

图6 (a)近红外高光谱成像仪原理图;(b)桑叶的近红外光谱采集

2023年,郭新东等研究人员建立了一种便携式近红外玉米叶片水分无损检测系统。该系统采用波长范围为1400 - 1450 nm的LED发光二极管作为光源,并采用PIN型光电二极管(响应范围800 - 1700 nm)采集光谱信号。此外,光源、光电二极管和被测叶片置于同一条直线,以减少光信号损失,如图7(a)所示。为准确获取土壤全氮(STN)含量和土壤水分(SM)含量,2019年,Zhou等研究人员基于8个特征波长(1206 nm、1330 nm、1360 nm、1430 nm、1530 nm、1580 nm、1660 nm和1450 nm)对土壤全氮和水分含量进行检测。如图7(b)所示,实验装置运用非接触式近红外检测技术,其采用8个单波段LD作为近红外光源,同时配备利用InGaAs光电传感器(波长范围为800 - 1700 nm)来接收土壤的漫反射光谱信号。

图7 (a)近红外光谱探测器结构;(b)原位STN-SM检测仪的整体结构

综上,近红外光谱检测技术在农业领域的广泛应用不仅提高了生产效率,也有助于实现农业的可持续发展。通过精准地了解土壤的化学成分、作物的生长状态、种子的活性,农业从业者可以及时并有针对性地调整施肥计划、优化农田管理。近红外检测技术为农业生产提供更为全面、可靠的信息,同时也推动了近红外检测技术在农业领域更深层次的创新。然而,当前的近红外检测设备成本较高,并且检测结果受环境影响较大。同时,光谱数据处理复杂,建立的模型效果有待提高。另外,近红外光谱检测技术在农业领域作物籽粒产前、产后品质和生长环境参、管理方法仍未形成闭环联系。

近红外光谱检测技术在药物分析领域的应用

近红外检测技术在药物的研究分析和生产过程中是一种绿色的监测手段和过程分析技术,能够有效加快了药物信息识别、降低了操作的复杂性。在临床检验时近红外光谱技术又被称为“黑匣子”分析技术,利用近红外光特征对样品中一些基团进行定性或者定量分析,例如,无创血糖检测、血红蛋白、组织的耗氧量等的浓度检测。

2022年,Gavan等研究人员基于1350 - 1550 nm范围内的近红外光谱信息在线监测帕利哌酮片的药品质量。在片剂监测过程中,选择原料药含量和片剂硬度作为缓释片的质量属性。如图8(a)所示,实验采用MAP-NIR光谱仪采集样品在800 - 1725 nm范围内的透射光谱,获得的光谱信息经预处理后建立预测模型。2022年,Assi等研究人员使用近红外光谱仪对疫苗的真伪进行检测,如图8(b)所示。研究发现,疫苗的mRNA活性成分对近红外光具有较强的吸收性并且具有较明显的特征谱带(9000 - 4000 cm⁻¹),同时检测模型也表现出较高的检测精度,为快速有效的检测疫苗真伪提供了初始技术。

图8 (a)在线混合监测实验装置;(b)Perkin Elme 2型光谱仪

综上,近红外光谱检测技术在药物分析领域展现出独特的价值,其在质量控制和药物含量无损检测方面的成功应用,使制药企业和监管部门能够更加精准地监测产品质量,确保产品的安全性。然而,在医药和临床检验时使用近红外光谱技术仍需提高器件的识别准确度、识别速度、识别体系辅料库、模型的使用范围。

近红外光谱检测技术在其他领域的应用

近红外光谱检测技术不仅在食品分析、生物医学、农业生产和药物分析领域有着广泛的应用,而且在垃圾分类、木材鉴别、气体分析等领域也展现出了较大的应用潜力。

润滑油含水率是反映其有效性的重要因素之一,2020年,Liu等研究人员开发了一种基于可见⁃近红外光谱技术的紧凑型润滑油含水率检测系统。如图9(a)所示,在该系统中,采用卤钨灯作为光源,并设计了一种反射式光探头来发送和接收光信号。为了验证该系统的可行性,分别采集了润滑油的透射和反射光谱。采集的光谱信号消除噪声信号后建立预测模型。2021年,Jahangiri等研究人员采用760 - 1040 nm范围内的光谱信息对沥青混合物中粘合剂进行分类。实验使用一种基于SCiO传感器的近红外微型光谱仪采集样品的近红外光谱信息,如图9(b)所示。

图9 (a)便携式光谱测量装置;(b)使用便携式近红外传感器扫描样品

2021年,Ma等研究人员提出一种空间分辨漫反射(波长范围为600 - 1000 nm)的近红外检测方法实现对木材的分类。如图10(b)所示,其采用自制的可见光⁃近红外SRS检测系统采集样品的近红外光谱信息,该系统采用功率为5 W的卤素灯作为光源,同时使用硅纤维收集漫反射光。为了加强对燃料质量的控制,2022年,Toscano等研究人员采用近红外光谱技术对燃料(木屑)的含水量进行检测。如图10(a)所示,在检测的过程中,使用MicroNIR传感器采集样品在950 - 1650 nm范围内的光谱信息,光谱信号经预处理后建立模型。2024年,Sing等研究人员开发了一种低成本的便携式近红外光谱仪来检测金鸡纳树皮中的奎宁、穿心莲中的内酯和黑胡椒中的胡椒碱。如图10(c)所示,其自制的光谱仪采用钨丝灯作为近红外光源,采集的光谱信息传输至电脑进行预处理并建立PLS预测模型。

图10 (a)便携式微型近红外传感器在实验室检测木屑;(b)可见光和近红外空间分辨光谱测量系统;(c)近红外光谱仪图片

结束语

这项研究总结了近红外光谱检测技术的检测流程、检测指标和器件系统的构成,以及在食品、农业、生物医学、药品分析等领域的研究进展,分析了不同检测仪器、光谱图谱采集方式、预处理方式、检测模型建立方法等对检测精度的影响。为了提升近红外检测技术的检测精度和效率,研究人员主要采用以下策略:(1)改变光谱图谱采集方式(透射或反射),获得更有效的光谱图谱信息,进而提高检测效率。(2)改变光谱数据预处理方法,选择最佳的光谱预处理方式,进而更好地消除光谱信息的噪点,并获得最佳的特征波长,为后续分析提供更准确的基础。(3)改变检测模型的建模方法,采用最佳建模方法建立检测模型,提高检测模型的相关系数,降低均方根误差,从而增强检测模型的性能。同时,通过优化建模方法,可以更准确地预测被检测物质的成分或性质,提高检测精度。

为了进一步推动近红外光谱检测技术应用发展,检测器件的微型化、智能化和即时化是重要发展环节。同时,光谱模型、建模方法、预处理方法、波段选择和建模因子数等方面的完善对结果的定量和半定量分析精度也至关重要。未来研究亦应关注新型检测仪器的光源制备,如近红外LED、近红外激光驱动光源和电池驱动型电源,从而推进检测技术的创新。

论文信息:

DOI: 10.14159/j.cnki.0441-3776.2024.08.011

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 99浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 202浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 95浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 73浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 154浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 149浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 211浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 145浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 217浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 128浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 166浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 193浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦