APM32芯得EP.47|APM32F411在RT-Thread系统下移植LVGL-8.3

极海Geehy 2024-12-02 17:30


《APM32芯得》系列内容为用户使用APM32系列产品的经验总结,均转载自21ic论坛极海半导体专区,全文未作任何修改,未经原文作者授权禁止转载。




1. LVGL简单介绍

关于LVGL的介绍,大家可以去它的官方文档查看。下面关于LVGL的介绍均是引用自对官方文档的翻译。


LVGL,全称是 Light and Versatile Graphics Library ,是一款免费开源的轻量多功能图形库。LVGL 提供创建嵌入式 GUI 所需的一切,该 GUI 具有易于使用的图形元素、美观的视觉效果和低内存占用。


主要特性:

· 强大的构建块,如按钮、图表、列表、滑块、图像等。

· 具有动画、抗锯齿、不透明度、平滑滚动的高级图形

· 各种输入设备,如触摸板、鼠标、键盘、编码器等

· UTF-8 编码的多语言支持

· 多显示器支持,即同时使用多个TFT、单色显示器

· 具有类似 CSS 样式的完全可定制的图形元素

· 独立于硬件:与任何微控制器或显示器一起使用

· 可扩展:能够使用很少的内存(64 kB 闪存、16 kB RAM)进行操作

· 支持操作系统、外部存储器和 GPU,但不是必需的

· 即使具有高级图形效果,也可进行单帧缓冲区操作

· 用 C 编写以实现最大兼容性(C++ 兼容)

· 无需嵌入式硬件即可在 PC 上启动嵌入式 GUI 设计的模拟器

· 绑定到 MicroPython

· 快速 GUI 设计的教程、示例、主题

· 文档可在线获取并以 PDF 形式提供

· 根据 MIT 许可免费且开源


运行的设备要求:


基本上,每个能够驱动显示器的现代控制器都适合运行 LVGL。最低要求是:


· 16、32 或 64 位微控制器或处理器

· 建议使用 > 16 MHz 时钟速度

· 闪存/ROM:> 64 kB 用于非常重要的组件(建议> 180 kB)

  · 内存:

    静态 RAM 使用量:~2 kB,具体取决于所使用的功能和对象类型堆栈:> 2kB(建议> 8 kB)动态数据(堆):> 2 KB(如果使用多个对象,建议> 48 kB)。LV_MEM_SIZE通过在 中设置lv_conf.h。显示缓冲区:> “水平分辨率”像素(建议> 10 “水平分辨率” )MCU 或外部显示控制器中的一个帧缓冲区

· C99 或更新版本的编译器


2. LVGL学习资源


下面搜集了一些LVGL的学习资源。


1、LVGL官网:

https://lvgl.io/

2、LVGL官网文档教程:

https://docs.lvgl.io/master/

3、百问网对LVGL官方文档的翻译:

https://lvgl.100ask.net/master/

4、LVGL Github仓库:

https://github.com/lvgl/lvgl

5、lvgl基于Visual sudio 的PC模拟器

https://github.com/lvgl/lv_sim_visual_studio

6、百问网基于LVGL的一个项目:

https://forums.100ask.net/t/topic/602


3. 移植前准备


移植的硬件平台:

MCU:APM32F411

LCD驱动芯片:ST7789V

触摸IC:CST816T


本次移植是基于 RT-Thread 系统上运行 LVGL 的,所以在移植前,我们需要准备好可以正常运行 RT-Thread 的Demo工程(可以到极海官网下载APM32F411的SDK)。


另外,还需准备好可以正常运行LCD的驱动和触摸IC的驱动的代码。


1、准备一份可以运行RT-Thread的Demo工程


2、下载LVGL_8.3源码

到官方 Github 仓库,然后选择 LVGL_8.3 版本。



下载到的LVGL源码,然后存放到工程目录下的  middlewares 文件夹。


4. LVGL移植


4.1 移动和修改移植的接口文件


(1)移植接口文件修改


下载了LVGL的源码之后,我们把移植要使用到的接口文件,修改文件名后,放到工程目录的另一个文件夹。



(2)移植配置文件修改


在LVGL源码的根目录下有一个 lv_conf_template.h 头文件,这个文件是 LVGL 库的配置文件,可以修改该文件来设置库的基本行为,禁用未使用的模块和功能,调整编译时缓冲区的大小等。



上面把LVGL移植接口和配置文件都复制到了工程的下面这个目录:




4.2 Keil工程配置

(1)Keil工程添加文件


把LVGL的源码导入到Keil工程下,其中 LVGL 源码目录下的 \src 目录的C文件可以全部导入Keil工程,然后再导入LVGL的移植接口文件。如下图:



导入完成之后如下:



(2)修改工程头文件路径包含



(3)勾选C99模式


LVGL源码的编译需要C99模式的支持,不然会出现大量的报错。



4.3 LVGL修改源码

(1)修改 startup_apm32f411.s 文件的栈大小


官方提供的启动文件的栈设置的比较小,我们需要改大一些。



(2)修改LVGL的配置文件 lvgl_conf.c


然后,下面是LVGL各个模块的配置,可以根据自己的需要是否打开还是关闭。


该文件还有色彩深度的配置,显示屏宽高的配置等,需要根据自己的硬件进行配置,不一一列举了。


(3)修改LVGL显示接口文件lv_port_disp.c

该文件就是LVGL的显示接口文件,需要我们先准备好LCD显示的描点函数。该文件主要要修改的点有:


1、打开显示接口文件宏定义


2、修改lv_port_disp_init函数


对于lv_port_disp_init函数,官方提供了3种写缓存的方式及设置显示分辨。我们可以选择其中一种方式即可,修改后的函数如: 


void lv_port_disp_init(void)

{

    /*-------------------------

     * Initialize your display

     * -----------------------*/

    disp_init();


    /*-----------------------------

     * Create a buffer for drawing

     *----------------------------*/


    /**

     * LVGL requires a buffer where it internally draws the widgets.

     * Later this buffer will passed to your display driver's `flush_cb` to copy its content to your display.

     * The buffer has to be greater than 1 display row

     *

     * There are 3 buffering configurations:

     * 1. Create ONE buffer:

     *      LVGL will draw the display's content here and writes it to your display

     *

     * 2. Create TWO buffer:

     *      LVGL will draw the display's content to a buffer and writes it your display.

     *      You should use DMA to write the buffer's content to the display.

     *      It will enable LVGL to draw the next part of the screen to the other buffer while

     *      the data is being sent form the first buffer. It makes rendering and flushing parallel.

     *

     * 3. Double buffering

     *      Set 2 screens sized buffers and set disp_drv.full_refresh = 1.

     *      This way LVGL will always provide the whole rendered screen in `flush_cb`

     *      and you only need to change the frame buffer's address.

     */


    /* Example for 1) */

    static lv_disp_draw_buf_t draw_buf_dsc_1;

    static lv_color_t buf_1[MY_DISP_HOR_RES * DISP_BUFFER_LINES];                          /*A buffer for 10 rows*/

    lv_disp_draw_buf_init(&draw_buf_dsc_1, buf_1, NULL, MY_DISP_HOR_RES * DISP_BUFFER_LINES);   /*Initialize the display buffer*/


//    /* Example for 2) */

//    static lv_disp_draw_buf_t draw_buf_dsc_2;

//    static lv_color_t buf_2_1[MY_DISP_HOR_RES * DISP_BUFFER_LINES];                        /*A buffer for 10 rows*/

//    static lv_color_t buf_2_2[MY_DISP_HOR_RES * DISP_BUFFER_LINES];                        /*An other buffer for 10 rows*/

//    lv_disp_draw_buf_init(&draw_buf_dsc_2, buf_2_1, buf_2_2, MY_DISP_HOR_RES * DISP_BUFFER_LINES);   /*Initialize the display buffer*/


//    /* Example for 3) also set disp_drv.full_refresh = 1 below*/

//    static lv_disp_draw_buf_t draw_buf_dsc_3;

//    static lv_color_t buf_3_1[MY_DISP_HOR_RES * MY_DISP_VER_RES];            /*A screen sized buffer*/

//    static lv_color_t buf_3_2[MY_DISP_HOR_RES * MY_DISP_VER_RES];            /*Another screen sized buffer*/

//    lv_disp_draw_buf_init(&draw_buf_dsc_3, buf_3_1, buf_3_2,

//                          MY_DISP_VER_RES * MY_DISP_VER_RES);   /*Initialize the display buffer*/


    /*-----------------------------------

     * Register the display in LVGL

     *----------------------------------*/


    static lv_disp_drv_t disp_drv;                         /*Descriptor of a display driver*/

    lv_disp_drv_init(&disp_drv);                    /*Basic initialization*/


    /*Set up the functions to access to your display*/


    /*Set the resolution of the display*/

    disp_drv.hor_res = MY_DISP_HOR_RES;

    disp_drv.ver_res = MY_DISP_VER_RES;


    /*Used to copy the buffer's content to the display*/

    disp_drv.flush_cb = disp_flush;


    /*Set a display buffer*/

    disp_drv.draw_buf = &draw_buf_dsc_1;


    /*Required for Example 3)*/

    //disp_drv.full_refresh = 1;


    /* Fill a memory array with a color if you have GPU.

     * Note that, in lv_conf.h you can enable GPUs that has built-in support in LVGL.

     * But if you have a different GPU you can use with this callback.*/

    //disp_drv.gpu_fill_cb = gpu_fill;


    /*Finally register the driver*/

    lv_disp_drv_register(&disp_drv);

}



3、修改disp_flush函数


该函数就是调用底层LCD描点函数进行绘制UI界面的。 


// LCD描点函数

void LCD_Color_Fill(u16 sx, u16 sy, u16 ex, u16 ey, u16 *color)

{

    u16 i, j;

    u16 height, width;


    width = ex - sx + 1;

    height = ey - sy + 1;

    

    LCD_Address_Set(sx,sy+OFFSET_Y,ex,ey+OFFSET_Y);

    

    for (i = 0; i < height; i++)

    {

        for (j = 0; j < width; j++)

        {

            LCD_WR_DATA(color[i * width + j]);

        }

    }

}


static void disp_flush(lv_disp_drv_t * disp_drv, const lv_area_t * area, lv_color_t * color_p)

{

    // 调用底层LCD描点函数

    LCD_Color_Fill(area->x1, area->y1, area->x2, area->y2, (uint16_t *)color_p);


    /*IMPORTANT!!!

     *Inform the graphics library that you are ready with the flushing*/

    lv_disp_flush_ready(disp_drv);

}



4.4 添加和修改RT-Thread环境的LVGL文件支持

我们需要把LVGL运行在RT-Thread系统,所以我们需要添加LVGL的RT-Thread接口文件。官方其实已经做好了对应的文件,我们复制到工程目录下修改即可。


(1)添加LVGL的RT-Thread接口文件到Keil工程


然后把这两个文件加入到Keil工程目录下:


(2)修改lv_rt_thread_conf.h头文件


因为官方已经做好了RT-Thread接口文件了,我们只需要简单修改即可。修改如下:


4.5 添加LVGL Demo例程

前面的移植和修改代码已经完成了LVGL的移植工程,下面我们添加一个简单的 LVGLDemo 例程进行测试。


我们可以在官方的源码目录 .\demos 目录下选一个示例程序,或者也可以自己找一个其他的简单的LVGL示例代码。我下面选一个日历demo例程进行演示。


最后编译工程源码和下载到APM32F411中。


编译会有一些警告,这是LVGL源码引入的,有些语**有警告,可以暂时忽略。


在APM32F411运行结果如下:



5. 给LVGL添加触摸接口


前面的移植已经把显示接口给完成了,而且上面也可以正常显示了。但是LVGL的输入接口还没移植进来,不过有了前面的移植过程,添加触摸输入接口就很简单了。主要就是修改 lv_port_indev.c 文件。


(1)把  lv_port_indev.c 文件的宏定义改为1


(2)修改 touchpad_is_pressed 和 touchpad_get_xy 函数 


/*Return true is the touchpad is pressed*/

static bool touchpad_is_pressed(void)

{

    /*Your code comes here*/

    uint8_t num = cst816t_get_touch_points_num(); // 是否有触摸点

    

    if ((num != 0) && (num != 0xFF))

    {

        return true;

    }

    else

    {

        return false;

    }

}


/*Get the x and y coordinates if the touchpad is pressed*/

static void touchpad_get_xy(lv_coord_t * x, lv_coord_t * y)

{

    /*Your code comes here*/

//    uint16_t tp_x = 0, tp_y = 0;

    cst816t_read_pos((uint16_t *)x, (uint16_t *)y);  // 底层获取触摸坐标函数

//    (*x) = tp_x;

//    (*y) = tp_y;

}



cst816t_read_pos 函数是要我们先写好的获取触摸坐标的函数。另外还有一些没用到的代码我给注释掉了。


增加完上述代码就可以发现在屏幕可以点击进行修改日期了,说明触摸接口移植完成。


最后,APM32F411在RT-Thread系统下移植LVGL工程就全部完成了。整个过程还是比较简单的,而且网上也有很多相关的教程。不过移植过程中还是碰到不是小问题的,有些细节并没有在文章中一一写出来,在移植过程中遇到一些问题就需要我们根据报错提示对应解决就好。另外,在移植前最重要的就是要保证LCD驱动和触摸驱动代码正确,然后再进行移植,这样出现问题我们比较好分析和定位问题。 


注:文章作者在原帖中提供了例程文件,有需要请至原文21ic论坛下载


原文地址:https://bbs.21ic.com/icview-3363652-1-1.html

或点击下方 阅读原文 跳转


↑↑↑ 点击上方卡片关注极海 ↑↑↑

极海Geehy 极海半导体是一家致力于开发工业级/车规级MCU、模拟与混合信号IC及系统级芯片的集成电路设计型企业
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 62浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 84浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 116浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 58浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 53浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 147浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦