国产16位MCU的痛点,可以用这款物美价廉产品(附完整开发过程)

嵌入式ARM 2021-01-15 00:00


出品 21ic论坛  呐咯密密

网站:bbs.21ic.com


16位的AD可以说是国产MCU的痛点,至少在廉价的单片机里面,这个真的找不到飞思卡尔的替代品。之前未使用16位AD的时候,使用的是STM32F0的单片机,因为产品需要,一直是将48M的主频超频到56M跑超速,后来因为疫情等原因,ST的价格飞上天,交期还特长,无奈之下换了国产兆易创新的GD32,不得不说,对标的GDE23主频直接到了72M,M0+,不用超频,正常跑高速就行。价格还便宜,不收过路费。在这一点上,国产的MCU真的很强。



现在项目需要16位的AD,一时间找不到任何国产的替代品,当然我们也把主意打到了ST的头上,但是捋到STM32H7才找到16位AD,2020年的ST的价格大家都清楚,如果选用这款芯片,我们的产品成本将大大增加,这已经超出了我们的预算。在之后的一番寻找中,确定了这个被恩智浦收购了多年的飞思卡尔的芯片。

MKV30,价格便宜,针对电机行业出生的MCU,在ADC的处理上可谓是下足了功夫。




自带差分输入模块,支持高达16位的差分AD输入, 自带硬件平均,可对输入的AD信号进行自动平均,支持低功耗和高速AD模式,可自动校准AD,自带比较器。

但是,因为很早就被收购,所以飞思卡尔的资料并不如NXP自家的产品那样详细丰富,导致开发难度很大,而且这款芯片不像K60那款,因为早期有智能车竞赛的缘故,网友分享的资料和经验很多。这款我拿到手里就很懵。本人并不是大佬,对新的单片机上手不是很容易。在开发的第一周就点了个灯,到处是坑。

下面分享我的开发过程和经验:

官网下载SDK直接pass,在有个基础工程的基础上使用MCUXpresso Config Tool配置ADC的引脚和功能初始化。

配置引脚:


因为我需要使用两路ADC的差分模式,这里配置ADC0和ADC1的引脚。使用PORTE16、PORTE17 、PORTE18 、PORTE19四个引脚。对应ADC的ADC0_DP1,ADC0_DM1,ADC1_DP1,ADC1_DM1。软件会自动配置引脚相关配置代码。

ADC配置:


配置为16位的差分AD,因为我追求最高速的ADC采集,所以时钟1分频,硬件的8次平均。

ADC1配置相同。

开始进入代码:

/******************************************************************************** Definitions******************************************************************************/#define DEMO_ADC16_CHANNEL 1U#define DEMO_ADC16_CHANNEL_GROUP 0U#define DEMO_ADC16_BASEADDR ADC0#define DEMO_DMAMUX_BASEADDR DMAMUX0#define DEMO_DMA_CHANNEL 1U#define DEMO_DMA_ADC0_SOURCE 40U#define DEMO_DMA_ADC1_SOURCE 41U#define DEMO_DMA_BASEADDR DMA0#define ADC16_RESULT_REG_ADDR 0x4003b010U#define ADC16_RESULT_REG_ADDR1 0x40027010U//查询寄存器手册得到#define DEMO_DMA_IRQ_ID DMA0_IRQn
#define DEMO_ADC16_SAMPLE_COUNT 8U /* The ADC16 sample count. *//************************************************************************************************************************ ADC0 initialization code**********************************************************************************************************************/adc16_channel_config_t ADC0_channelsConfig[1] = { { .channelNumber = 1U, //传输通道 .enableDifferentialConversion = true, //差分模式 .enableInterruptOnConversionCompleted = false, //使能传输完成中断 }};const adc16_config_t ADC0_config = { .referenceVoltageSource = kADC16_ReferenceVoltageSourceVref, .clockSource = 0, .enableAsynchronousClock = false, .clockDivider = kADC16_ClockDivider1, .resolution = kADC16_ResolutionSE16Bit, .longSampleMode = kADC16_LongSampleDisabled, .enableHighSpeed = true, .enableLowPower = false, .enableContinuousConversion = false//连续的转换};const adc16_channel_mux_mode_t ADC0_muxMode = kADC16_ChannelMuxA;/* 硬件平均 8 */const adc16_hardware_average_mode_t ADC0_hardwareAverageMode = kADC16_HardwareAverageDisabled;void ADC0_init(void) { /* Initialize ADC16 converter */ ADC16_Init(ADC0_PERIPHERAL, &ADC0_config); /* Make sure, that software trigger is used */ ADC16_EnableHardwareTrigger(ADC0_PERIPHERAL, false); /* Configure hardware average mode */ ADC16_SetHardwareAverage(ADC0_PERIPHERAL, ADC0_hardwareAverageMode); /* Configure channel multiplexing mode */ ADC16_SetChannelMuxMode(ADC0_PERIPHERAL, ADC0_muxMode); /* Initialize channel */ ADC16_SetChannelConfig(ADC0_PERIPHERAL, 0U, &ADC0_channelsConfig[0]); /* Perform auto calibration */ ADC16_DoAutoCalibration(ADC0_PERIPHERAL); /* Enable DMA. */ ADC16_EnableDMA(ADC0_PERIPHERAL, false);}/************************************************************************************************************************ ADC1 initialization code**********************************************************************************************************************/adc16_channel_config_t ADC1_channelsConfig[1] = { { .channelNumber = 2U, .enableDifferentialConversion = true, //差分模式 .enableInterruptOnConversionCompleted = false, }};const adc16_config_t ADC1_config = { .referenceVoltageSource = kADC16_ReferenceVoltageSourceVref, .clockSource = 0, .enableAsynchronousClock = false, .clockDivider = kADC16_ClockDivider1, .resolution = kADC16_ResolutionSE16Bit, .longSampleMode = kADC16_LongSampleDisabled, .enableHighSpeed = true, .enableLowPower = false, .enableContinuousConversion = false//连续的转换};const adc16_channel_mux_mode_t ADC1_muxMode = kADC16_ChannelMuxA;const adc16_hardware_average_mode_t ADC1_hardwareAverageMode = kADC16_HardwareAverageDisabled;void ADC1_init(void) {// EnableIRQ(ADC0_IRQn); /* 初始化ADC16转换器 */ ADC16_Init(ADC1_PERIPHERAL, &ADC1_config); /* 不使用软件触发器 */ ADC16_EnableHardwareTrigger(ADC1_PERIPHERAL, false); /* 配置硬件平均模式 */ ADC16_SetHardwareAverage(ADC1_PERIPHERAL, ADC1_hardwareAverageMode); /* 配置信道多路复用模式 */ ADC16_SetChannelMuxMode(ADC1_PERIPHERAL, ADC1_muxMode); /* 初始化通道 */ ADC16_SetChannelConfig(ADC1_PERIPHERAL, 1U, &ADC1_channelsConfig[0]); /* 自动校准 */ ADC16_DoAutoCalibration(ADC1_PERIPHERAL); /* Enable DMA. */ ADC16_EnableDMA(ADC1_PERIPHERAL, false);
}

这里以ADC0为例,传输通道设置为1,配置为差分模式,不使能传输完成中断。ADC0_config结构体中的配置主要是配置时钟和采样速度,我的配置是我能达到的最高速度。在ADC0_init函数中,配置为软件触发,如果使用PDB,需要改为硬件触发,关闭了硬件平均。

当我们需要获取ADC的数据时,需要以下代码。

adc16_channel_config_t adc16ChannelConfigStruct; adc16ChannelConfigStruct.channelNumber = 1; //ADC通道 adc16ChannelConfigStruct.channelNumber = 2; adc16ChannelConfigStruct.enableDifferentialConversion = true;//使能差分 adc16ChannelConfigStruct.enableInterruptOnConversionCompleted = false;//失能中断 ADC16_SetChannelConfig(ADC1, 0U, &adc16ChannelConfigStruct); ADC16_SetChannelConfig(ADC0, 0U, &adc16ChannelConfigStruct); while (0U == (kADC16_ChannelConversionDoneFlag & ADC16_GetChannelStatusFlags(ADC1, 0U))); ADC_Value0 = ADC16_GetChannelConversionValue(ADC0, 0U); ADC_Value1 = ADC16_GetChannelConversionValue(ADC1, 0U); 

可以将上述代码添加进主循环,在需要AD值时便可以直接读取ADC_Value0和ADC_Value1的值便可,可以包装成一个函数,需要时调用即可,执行一次该代码大约需要3us。如果AD的通道很多,可以使用for循环,改善代码。但是此方法占用MCU的内存,下一篇更新灵活多通道的DMA采集。

要点:

这里配置为ADC16位模式,但是并不是真正意义上的16位,在数据寄存器中有介绍,数据寄存器是16位,只有低15位是有效数据位,最高位为16位,所以ADC的范围是0~32767,加上最高位的符号位能达到-32767~+32767.


我在这里没看手册,采集到的数据一直无法理解。


输入通道输入的是正弦波,结果串口打印出来的确是这个玩意,最后处理一下符号位解决。

上电之后会开始ADC采集,ADC采集完成触发dma通道1开始传输到指定缓存,dma通道1传输完成触发链接,链接dma通道2,dma通道2将adc配置传给adc配置寄存器。这样可以灵活采集各种通道,并且对资源占用较小。只要设置好配置adc的数组,剩下的dma就会处理.DMA配置:


void EDMA_Configuration(void){  edma_config_t userConfig; /* 配置 DMAMUX */ DMAMUX_Init(DMAMUX); /* 通道CH1初始化 */ DMAMUX_SetSource(DMAMUX, 1, 40); /* Map ADC0 source to channel 1 */ DMAMUX_EnableChannel(DMAMUX, 1); /* 通道CH2初始化 */ DMAMUX_SetSource(DMAMUX, 2, 41);/* Map ADC1 source to channel 2 */ DMAMUX_EnableChannel(DMAMUX, 2); /* 获取eDMA默认配置结构 */ EDMA_GetDefaultConfig(&userConfig); EDMA_Init(DMA0, &userConfig); EDMA_CreateHandle(&g_EDMA_Handle, DMA0, 1); /* 设置回调 */ EDMA_SetCallback(&g_EDMA_Handle, Edma_Callback, NULL); /*eDMA传输结构配置 .设置dma通道1的adc值传到g_adc16SampleDataArray*/ EDMA_PrepareTransfer(&transferConfig, (void *)ADC16_RESULT_REG_ADDR, sizeof(uint32_t), (void *)g_adc16SampleDataArray, sizeof(uint32_t), sizeof(uint32_t), sizeof(g_adc16SampleDataArray), kEDMA_PeripheralToMemory); EDMA_SubmitTransfer(&g_EDMA_Handle, &transferConfig); /* Enable interrupt when transfer is done. */ EDMA_EnableChannelInterrupts(DEMO_DMA_BASEADDR, DEMO_DMA_CHANNEL, kEDMA_MajorInterruptEnable);#if defined(FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT) && FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT /* Enable async DMA request. */ EDMA_EnableAsyncRequest(DEMO_DMA_BASEADDR, DEMO_DMA_CHANNEL, true);#endif /* FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT */ /* Enable transfer. */ EDMA_StartTransfer(&g_EDMA_Handle); //将dma通道1链接到通道0 EDMA_SetChannelLink(DMA0, 1, kEDMA_MinorLink, 2); EDMA_SetChannelLink(DMA0, 1, kEDMA_MajorLink,2);
//*********************************************************************************************/ EDMA_CreateHandle(&DMA_CH2_Handle, DMA0, 2); EDMA_SetCallback(&DMA_CH2_Handle, Edma_Callback1, NULL); /* 设置回调 */ EDMA_PrepareTransfer(&g_transferConfig, (void *)ADC16_RESULT_REG_ADDR1, sizeof(uint32_t), (void *)g_adc16SampleDataArray1, sizeof(uint32_t), sizeof(uint32_t), sizeof(g_adc16SampleDataArray1), kEDMA_PeripheralToMemory); EDMA_SubmitTransfer(&DMA_CH2_Handle, &g_transferConfig); //传输完后修正通道 DMA0->TCD[1].DLAST_SGA = -1* sizeof(g_adc16SampleDataArray); DMA0->TCD[2].DLAST_SGA = -1* sizeof(g_adc16SampleDataArray1); /* 当传输完成时启用中断. */ EDMA_EnableChannelInterrupts(DEMO_DMA_BASEADDR, 2, kEDMA_MajorInterruptEnable);#if defined(FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT) && FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT// /* 启用异步DMA请求 */ EDMA_EnableAsyncRequest(DEMO_DMA_BASEADDR, 2, true);#endif /* FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT */ /* 使能数据传输 */ EDMA_StartTransfer(&DMA_CH2_Handle); }



DAM 通道1和通道2的callback函数。
因为通道2是通过通道一链接触发的,所以在通道1的回调函数里面就不用再调用EDMA_StartTransfer()函数了。
此处注意将ADC的采样模式改为连续模式。


static void Edma_Callback(edma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds){  EDMA_StartTransfer(&g_EDMA_Handle);  g_Transfer_Done = false; if (transferDone) { g_Transfer_Done = true; }}
static void Edma_Callback1(edma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds){ g_Transfer_Done1 = false; if (transferDone) { g_Transfer_Done1 = true; }}



至此ADC的DMA就完成了,ADC会一直采集并通过DMA传输到g_adc16SampleDataArray[]和g_adc16SampleDataArray1[]两个数组中,需要时可以直接取值。我在使用ADC的DMA连续采样时遇到一个问题,因为连续采样会触发callback函数,此过程会触发edma中断,容易打断原来代码的进程,如在高速应用中使用需注意。

芯片的入门环境搭建

该芯片的入门环境搭建,内容主要是官网获取ASDK,这个芯片我不知道是因为用的特别少,还是没公开开发经验,很难找到相关资料,只有在NXP社区能找到一点资料,代理商也是只负责销售,技术问题一概不管。在一顿乱搞之后搭建完一些工具之后,发现官方的SDK在我的板子上根本跑不起来,但是还好NXP论坛还有一个管理员提供一些支持,让我能一步步走下来。那就开始点一个灯吧。

无论是下载资料还是论坛讨论都必须注册NXP账号,注册这里不谈,跳过。
注册完成后进入此链接: (
https://www.nxp.com.cn/products/ ... ab=Design_Tools_Tab )

在此链接下找到MCUXpresso Config Tools 软件,然后下载。


下载完成自己安装,此软件可自行配置工程,相当于ST的STM32CubeMX,可以方便配置时钟外设,我们只用专注于写逻辑便好,因为我是自己画的板子,搭建的工程无法使用,只用它配置外设。
相同的页面继续下载一个SDK,MCUXpresso Software Development Kit (SDK)





在搜索框输入芯片名称,会弹出相应开发板或芯片,我是自己打的板子,选择芯片



选择SDK版本




点击进入SDK




直接下载就好啦,因为我没有梯子,下载特别慢,用其他浏览器会下载失败,推介使用谷歌浏览器。


之后下载KEIL的MDK包,这个自行去官网下载。

END

本文系21ic论坛蓝V作者呐咯密密原创


推荐阅读
国内MCU能替代国外产品吗?MCU的未来又将如何?
STM32价格疯长下,盘点STM32的国产替代者
选微处理器MPU,还是单片机MCU?两者区别详解

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 196浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 75浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 722浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 730浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 92浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 130浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 148浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 199浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 165浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 367浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦