干涉定量相位显微:“皮米”级别灵敏度——开启微观世界的新视野

MEMS 2024-11-30 00:02

封面解读

封面展示了激光干涉定量相位显微成像技术(iQPM)的概念图。iQPM通过捕捉激光干涉图并结合相位恢复算法,精确提取复合光场的相位延迟信息,从而实现对结构的精准测量。随着近年来高灵敏度iQPM技术的发展,科研人员已经实现了对小至原子尺度的材料特性进行精确表征。图中展示了高灵敏度iQPM在单原子层材料表征中的应用。展望未来,iQPM灵敏度的进一步提升有望促进科学家们对微观世界的探索和发现,揭示更小尺度下材料的功能特性和动态行为。

撰稿人:周楠森

论文题目:高灵敏度干涉定量相位显微前沿进展与应用(封面文章·特邀)

作者:周楠森1,吴沐蕾1,聂宇洁2,程加雨1,3,周仁杰1

完成单位:1.香港中文大学 生物医学工程系;2.深圳市倍捷锐生物医学科技有限公司;3.南开大学 物理科学学院

导读

想象一下,一台显微镜,不仅能帮助我们看到细胞内部的微观结构,还能精确测量原子尺度的细节。这听起来像是科幻,但如今的光学显微技术正在逐渐让这些成为现实。

自从光学显微技术诞生以来,它就成了科学家探索微观世界的强大工具。近年来,尤其是在研究细胞活动、疾病机制以及药物开发中,实时观测细胞的动态变化尤为关键。同时,随着芯片制造工艺不断迈向原子尺度,如何在不损伤芯片的情况下快速检测微小瑕疵也至关重要。
针对以上前沿需求,科学家们致力于开发高灵敏度的前沿光学成像技术,例如干涉定量相位显微技术(iQPM)。iQPM通过测量光的相位延迟来揭示微纳物体的形貌信息,可定量解析传统显微镜无法捕捉的细节。在过去的十年里,通过大量研究工作,iQPM的灵敏度得到了显著提高,达到如今的“皮米”级别,相当于比纳米还要小一千倍的尺度!这意味着我们可以利用iQPM看到更加细微的动态变化,并进行更加精准的测量。
这篇文章将带你了解iQPM的灵敏度提升历程。你会发现,iQPM不仅仅是一项显微技术,更是打开微观世界新大门的神奇钥匙。

研究背景

通过捕捉和解析干涉图,并结合精密的成像物理模型,iQPM能够提供精确的相位延迟信息,使样本形貌及其动态变化得到定量解析。自问世以来,iQPM凭借其无标记、宽场成像以及定量分析的特点,逐步成为了生物医学和材料科学等领域的重要科研工具,尤其在细胞动力学、血液分析,以及材料特性表征等方面。
相位灵敏度是iQPM系统的核心指标,它决定了在目标结构中可捕捉到的最小相位信号。传统iQPM的相位灵敏度在纳米量级,但在过去十多年里,研究人员通过持续的技术创新,提出了多种灵敏度提升策略,显著降低了环境干扰和探测噪声等灵敏度受限因素的影响,使相位灵敏度提升到了皮米级别。这一进步不仅突破了技术的局限,还为iQPM在活细胞的亚纳米动态分析、神经成像、原子材料计量与晶圆缺陷检测等领域开辟了更多可能性。

技术亮点

iQPM系统构造和影响灵敏度的噪声来源

iQPM结合了宽场光学显微技术和激光干涉技术,下图展示了由三种典型的干涉仪组成的iQPM系统,包括基于马赫-曾德尔干涉仪的透射式系统 (分为移相干涉仪和离轴干涉仪) 与基于林尼克干涉仪的反射式系统。围绕高灵敏度成像的主题,文章从相位时间灵敏度和空间灵敏度的定义出发,详细分析了在相位测量过程中影响灵敏度的各种噪声来源。这些噪声包括探测噪声(如光子散粒噪声,暗噪声、读出噪声)、机械振动噪声、散斑噪声,以及空气扰动,光源不稳定性产生的噪声等。值得注意的是,在假设无环境干扰和光源稳定的理想条件下,系统噪声存在光子散粒噪声的固有限制,因此文章还回顾了受限于光子散粒噪声的时间相位灵敏度极限理论。

图1  iQPM 原理与系统示意图

相位灵敏度提升策略

在噪声源分析的基础上,文章推导了时空相位灵敏度理论,并提供了提升iQPM灵敏度的关键步骤:首先,通过降低环境扰动(如背景噪声)对干涉测量的影响来提高整体系统稳定性;其次,提升照明光强并缩短曝光时间,以使得相机的读出噪声和暗噪声影响降到最低,从而使光子散粒噪声成为主导噪声源;最后,通过优化照明模块调制光源相干性,以减少散斑噪声的影响。

此外,文章回顾并总结了近年来在干涉光路设计、探测和照明等方面的突破性工作和最新进展,这些技术显著提升了相位灵敏度,特别是在环境噪声抑制、探测噪声抑制和散斑噪声抑制方面的创新工作。通过这些技术改进,iQPM的时间相位灵敏度已经突破到2皮米(pm)的水平。下图总结了相位灵敏度提升策略与灵敏度提升发展历程。

图2 iQPM相位灵敏度提升策略

图3 iQPM相位灵敏度提升发展历程

高灵敏度iQPM的应用

相位灵敏度的突破使得iQPM在诸多前沿领域展现了应用潜力。文章梳理了高灵敏度iQPM在血细胞分析、神经成像、原子材料厚度计量和晶圆缺陷检测等前沿应用领域的进展。例如在血细胞分析中,iQPM可以实时精准测量红细胞膜位移;在材料科学中,它能够以高速和高精度测量二维材料的厚度分布;而在半导体制造中,高灵敏度iQPM能够实现9 nm节点的IDA晶圆缺陷检测。这些技术进展不仅为iQPM带来了更广阔的应用前景,也推动了相关领域的技术革新与发展。

图4 红细胞的纳米级膜位移实时测量

图5 二维材料厚度分布测量(左:单层MoS2; 右:多层WSe2

结论与展望

尽管各种灵敏度提升策略被提出且得到了实验证实,iQPM系统却依然受到固有光子散粒噪声极限的制约,因此进一步提升灵敏度到亚皮米或以下面临瓶颈。随着激光脉冲达到了阿秒量级,研究者能够探究复杂分子中的超快电子动力学(2023年诺贝尔物理学奖),这为激光精密计量技术,如iQPM,在更小的电子尺度测量带来了新的可能性。此外,探索通过直接放大相位信号等策略,也有望突破当前灵敏度的提升瓶颈。
在探索亚原子及电子尺度的微观世界中,灵敏度需求更加严苛。例如新兴的扭转电子学(Twistronics) 为操控二维层状材料的电子特性提供了新的可能性,这有潜力推动下一代光电子器件的发展。然而,其中因原子层间不同堆叠顺序产生的层间间距变化在亚原子级别,需要相应的计量工具实现精确测量。
可以展望,iQPM技术在灵敏度上的进一步突破将继续推动前沿材料科学与生物医学的发展,并且还可扩展至半导体检测、高精度计量等领域,为微电子制造和新材料开发提供支持。

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 166浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 216浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 185浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 218浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 131浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 168浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 120浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 180浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 214浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 150浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦