重磅来袭!“鲍哲南院士/崔屹院士/秦健教授”最新顶刊

锂电联盟会长 2024-11-29 09:01

点击左上角“锂电联盟会长”,即可关注!

【研究背景】
电解液组分设计调控是一种十分有效的稳定锂金属负极的策略。为了避免大量的试错实验,需要对分子构型进行精细地设计调控,才能高效地实现溶剂、盐和添加剂的筛选。基于此,斯坦福大学鲍哲南院士、崔屹院士、秦健教授团队Chem. Sci.上发表题为“Hyperconjugation-controlled molecular conformation weakens lithium-ion solvation and stabilizes lithium metal anodes”的研究论文,作者模拟通过对非氟醚的系统研究,发现短链缩醛由于超共轭而倾向于间扭式的分子构型,这导致与Li+的单齿配位减弱,显著提升了锂金属负极的循环稳定性。在无负极Cu//LFP软包电池中,4mA cm-2电流密度下可以稳定循环70-100次,高负载LFP//薄锂纽扣电池中可稳定循环200-300次。

【图文导读】
图1 LMB电池电解液溶剂化结构设计策略。

在电解液设计中,溶剂氟化已被证明可以有效地调节溶剂的路易斯碱度,从而调节溶剂的溶剂化能力。然而,氟化有机分子面临着成本、环境问题和毒性等潜在问题。因此,开发更多的分子设计原理是很有意义的。本文提出了一种新的分子设计策略,作者使用溶剂分子构象来调整Li+溶剂化结构和电解质反应性。乙二醇醚在两个O-CH2键之间有一个相对灵活的二面角,这使得与Li+的双齿螯合成为可能。相反,缩醛由于超共轭作用,有利于O-CH3和O-CH2键之间的间扭式构象,从而导致与Li+的弱单齿配位(图1a)。作者通过研究二甲氧基甲烷(DMM)和二氧基甲烷(DEM)的溶剂化行为来证明这一策略。假设缩醛是弱单齿配体,因为(1)由于两个氧之间的距离缩短,螯合的稳定效果降低(图1a);(2)由于超共轭的分子构象(图1b)导致每个氧上的电荷密度方向相反,并显着降低了与Li+的螯合(图1a)。先前的研究证实了纯DMM和DEM的构象,然而,目前尚不清楚Li+配位是否会改变它们的构象。因此,作者使用密度泛函理论(DFT)计算来确定溶剂化壳内外的最佳溶剂构象(图1c-e)。

图2 0.9 M和3M LiFSI在缩醛(DMM和DEM)和乙二醇醚(DME和DEE)中的静态溶剂化结构的实验和计算表征。

图2所示,较高的ΔμLi+与较弱的Li+溶剂化相关。作者发现,对于0.9 M和3 M的LiFSI,ΔμLi+的增加顺序为DME < DEE < DMM < DEM(图2a),证实DMM和DEM对Li+的溶剂化作用较弱。通过拉曼光谱推断的离子相互作用程度证实了ΔμLi+的观测结果。如图2b所示,其中700和760 cm1之间的峰对应于各种溶剂化环境下的FSI。相对于溶剂分离离子对(SSIP),向更高的波数移动表明接触离子对(CIP)和离子聚集(AGG)的比例更大。此外,进行了全原子分子动力学(MD)模拟,以提供内部溶剂化壳的详细视图(ESI图S2†)。当配位FSI的数量为0、1或≥2时,Li+溶剂化壳被分类为SSIP、CIP或AGG(图2c)。根据MD结果,作者进一步估计了Li+周围配位溶剂和FSI的平均密度。密度被定义为每个配体(如二甲醚)与中心金属离子(如Li+)结合的供体基团(如O原子)的数量。在0.9 M和3 M LiFSI下,DME和DEE的平均密度都高于DMM和DEM(图2d),这与作者通过NMR和DFT预测的单齿DMM和DEM相对于双齿DME和DEE的结果一致(图1)。

图3 0.9 M和3 M LiFSI在DMM和DEM中的电化学稳定性。

缩醛电解质的Li//Cu半电池性能如图所示,DMM和DEM中的0.9 M和3M LiFSI明显优于3M LiFSI/DEE(图3a)。值得注意的是,DMM中的0.9 M和3 M LiFSI分别在5和3个循环内达到了> 99% CE。这对于无负极LMB来说是非常理想的,但它以前只在含氟溶剂的电解质中观察到。相比之下,3 M LiFSI/DEM和DEE分别在19次和45次循环后达到了> 99% CE(图3a)。它们的缓慢激活会导致初始循环中锂库存的快速损失。第50次循环后计算的五种电解质的稳定平均CE均在99%以上,其中3M LiFSI/DMM最高,达到99.5%(图3b)。

与室温相比(图3c),两种缩醛电解质在-20°C时的CE更高,尽管变化略大(图3d)。CE的增加可能是由于低温下动力学抑制的副反应。作者使用Li//Al电池进行线性扫描伏安法(LSV)。在4.4 V以下,缩醛电解质的漏电流没有急剧增加(图3e),这表明与Al集流体的稳定性良好。Pt电极测试结果如图所示,对于0.9 M和3 M的DMM中的LiFSI,Pt的快速氧化开始时间约为4 V(相对于Li+/Li),而对于DEM电解质则略低(图3f)。与Al相比,在更低的电压范围内,Pt上发生了明显的氧化,这表明尽管在Al上钝化良好,但缩醛电解质的阳极稳定性有限。

图4 Li//Li对称电池性能。

Li//Li对称电池的过电位是衡量离子传输重要指标。电池在1mA cm-2下,以容量为1mAh cm-2循环(图4a)。与许多报道的高CE电解质相比,3M LiFSI/DMM中的过电位显著降低(50次循环后为~ 22 mV,800次循环后为~ 30 mV,1200次循环后为~ 34 mV)。也低于3 M的LiFSI/DEE,尽管在1500小时后突然增加。在Li//Li电池中进一步测试了倍率性能,电流范围为1 mA cm-2至10 mA cm-2图4b)。3 M LiFSI/DMM和DEE的过电位都随着电流的增加而逐渐增加,而3 M LiFSI/DEM的过电位在6 mA cm-2时急剧增加,这是由于离子传输阻抗较大导致的。

图5 LFP基全电池性能。

在C/5、C/2和1C充电和2C放电时,DMM和DEM电解质都达到了大约100次循环,80%的容量保持,具有良好的再现性(图5a-c)。相应的CE均在99%以上,波动小,循环稳定性好。与1.2 M的LiFSI/F4DEE和F5DEE相比,DMM和DEM电解质具有相似的循环寿命,在C/5充电时具有更高的容量利用率,并且由于离子传输更快,在C/2和1C充电时具有更好的循环稳定性(ESI图)。在2C充电时,由于离子传输的差异,3M LiFSI/DMM的容量利用率明显高于3M LiFSI/DEM(图5d),而CE在两种电解质中都保持稳定。无负极电池相对较短的循环寿命掩盖了长期稳定性的差异。因此,薄锂‖LFP纽扣电池也使用高负载正极(3.6至4 mA h cm-2)和有限的过量锂(50或20 μm厚度)在0.6/1 mA cm-2或0.75/1.5 mA cm-2充放电电流密度(图5e-g)进行了测试,结果进一步证明了缩醛电解质的优越性。

【总结】
作者报道了溶剂分子构象控制Li+溶剂化的有效设计策略,由于超共轭作用,DMM和DEM成为单齿配体。与乙二醇醚相比,这导致Li+在缩醛中的溶剂化较弱,这有利于改善锂金属负极的循环库仑效率。特别地,在作者的条件下,0.9 M和3 M的LiFSI/DMM在3到5个循环内达到了>99%的CE,这与一些最好的氟化醚相当。在无负极Cu‖LFP软包电池和薄Li‖LFP纽扣电池中证明了3 M LiFSI/DMM的快速离子传输和良好的锂循环稳定性。此外,作者还发现溶剂分子结构的微小变化会极大地改变离子的输运性质,离子输运机制的研究是克服LMB电解质中离子输运缓慢问题的关键。

【文章链接】
Yuelang Chen, Sheng-Lun Liao, Huaxin Gong, Zewen Zhang, Zhuojun Huang, Sang Cheol Kim, Elizabeth Zhang, Hao Lyu, Weilai Yu, Yangju Lin, Philaphon Sayavong, Yi Cui*, Jian Qin*, Zhenan Bao*. Hyperconjugation-controlled molecular conformation weakens lithium-ion solvation and stabilizes lithium metal anodes. Chem. Sci., 2024, DOI: 10.1039/D4SC05319B
转载自:能源学人

锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 48浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 54浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 80浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 53浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 66浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 61浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦