FacenetPytorch人脸识别方案--基于米尔全志T527开发板

米尔电子嵌入式 2024-11-28 08:00

本篇测评由电子工程世界的优秀测评者“小火苗”提供。


本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志 T527开发板)的FacenetPytorch人脸识别方案测试。

一、facenet_pytorch算法实现人脸识别

深度神经网络
1.简介
Facenet-PyTorch 是一个基于 PyTorch 框架实现的人脸识别库。它提供了 FaceNet 模型的 PyTorch 实现,可以用于训练自己的人脸识别模型。FaceNet 是由 Google 研究人员提出的一种深度学习模型,专门用于人脸识别任务。
在利用PyTorch神经网络算法进行人脸图像对比的实验设置中,我们专注于对比环节,而不涉及实际项目的完整实现细节。但为了贴近实际应用,我们可以构想以下流程:
1)捕捉新人脸图像:首先,我们使用摄像头或其他图像采集设备捕捉一张新的人脸照片。
2)加载存储的人脸图像:接着,从数据库中加载所有已存储的人脸图像。这些图像是之前采集并存储的,用于与新捕捉到的人脸照片进行对比。
3)构建神经网络模型:为了实现对比功能,我们需要一个预先训练好或自定义的神经网络模型。这个模型能够提取人脸图像中的关键特征,使得相似的图像在特征空间中具有相近的表示。
4)特征提取:利用神经网络模型,对新捕捉到的人脸照片和存储的每一张人脸图像进行特征提取。这些特征向量将用于后续的对比计算。
5)计算相似度:采用合适的相似度度量方法(如余弦相似度、欧氏距离等),计算新照片特征向量与存储图像特征向量之间的相似度。
6)确定匹配图像:根据相似度计算结果,找到与新照片相似度最高的存储图像,即认为这两张图像匹配成功。
7)输出匹配结果:最后,输出匹配成功的图像信息或相关标识,以完成人脸对比的实验任务。

2.核心组件
MTCNN:Multi-task Cascaded Convolutional Networks,即多任务级联卷积网络,专门设计用于同时进行人脸检测和对齐。它在处理速度和准确性上都有出色的表现,是当前人脸检测领域的主流算法之一。
FaceNet:由Google研究人员提出的一种深度学习模型,专门用于人脸识别任务。FaceNet通过将人脸图像映射到一个高维空间,使得同一个人的不同图像在这个空间中的距离尽可能小,而不同人的图像距离尽可能大。这种嵌入表示可以直接用于人脸验证、识别和聚类。

3.功能

    支持人脸检测:使用MTCNN算法进行人脸检测,能够准确识别出图像中的人脸位置。

    支持人脸识别:使用FaceNet算法进行人脸识别,能够提取人脸特征并进行相似度计算,实现人脸验证和识别功能。

二、安装facenet_pytorch库

1.更新系统
更新ubuntu系统,详情查看米尔提供的资料文件

2.更新系统软件
apt-get update

3.安装git等支持软件

sudo apt-get install -y python3-dev python3-pip libopenblas-dev libssl-dev libffi-dev git cmake

4.安装Pytorch支持工具

# 克隆 PyTorch 源代码git clone --recursive https://github.com/pytorch/pytorch# 进入 PyTorch 目录cd pytorch# 安装 PyTorch (需要根据你的需求选择 CUDA 版本,如果不需要 GPU 支持则不需要 --cuda 参数)pip3 install --no-cache-dir torch -f https://download.pytorch.org/whl/torch_stable.html# 测试 PyTorch 安装python3 -c "import torch; print(torch.__version__)"

5.安装facenet_pytorch

pip3 install facenet_pytorch

三、CSDN参考案例

1.代码实现

############face_demo.py#############################import cv2import torchfrom facenet_pytorch import MTCNN, InceptionResnetV1# 获得人脸特征向量def load_known_faces(dstImgPath, mtcnn, resnet):aligned = []knownImg = cv2.imread(dstImgPath) # 读取图片face = mtcnn(knownImg) # 使用mtcnn检测人脸,返回人脸数组if face is not None:aligned.append(face[0])aligned = torch.stack(aligned).to(device)with torch.no_grad():known_faces_emb = resnet(aligned).detach().cpu()# 使用ResNet模型获取人脸对应的特征向量print("\n人脸对应的特征向量为:\n", known_faces_emb)return known_faces_emb, knownImg# 计算人脸特征向量间的欧氏距离,设置阈值,判断是否为同一张人脸def match_faces(faces_emb, known_faces_emb, threshold):isExistDst = Falsedistance = (known_faces_emb[0] - faces_emb[0]).norm().item()print("\n两张人脸的欧式距离为:%.2f" % distance)if (distance < threshold):isExistDst = Truereturn isExistDstif __name__ == '__main__':# help(MTCNN)# help(InceptionResnetV1)# 获取设备device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')# mtcnn模型加载设置网络参数,进行人脸检测mtcnn = MTCNN(min_face_size=12, thresholds=[0.2, 0.2, 0.3],keep_all=True, device=device)# InceptionResnetV1模型加载用于获取人脸特征向量resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)MatchThreshold = 0.8 # 人脸特征向量匹配阈值设置known_faces_emb, _ = load_known_faces('yz.jpg', mtcnn, resnet) # 已知人物图faces_emb, img = load_known_faces('yz1.jpg', mtcnn, resnet) # 待检测人物图isExistDst = match_faces(faces_emb, known_faces_emb, MatchThreshold) # 人脸匹配print("设置的人脸特征向量匹配阈值为:", MatchThreshold)if isExistDst:boxes, prob, landmarks = mtcnn.detect(img, landmarks=True)print('由于欧氏距离小于匹配阈值,故匹配')else:print('由于欧氏距离大于匹配阈值,故不匹配')

此代码是使用训练后的模型程序进行使用,在程序中需要标明人脸识别对比的图像。

2.实践过程

第一次运行时系统需要下载预训练的vggface模型,下载过程较长,后面就不需要在下载了运行会很快。如图所示:

3.程序运行异常呗终止

运行程序,提示killed,系统杀死了本程序的运行,经过多方面的测试,最终发现是识别的图片过大,使得程序对内存消耗过大导致。后将图片缩小可以正常运行了。

以下是对比图像和对比结果。

四、gitHub开源代码

1.首先下载代码文件
代码库中,大致的介绍了facenet算法的训练步骤等。

2.代码实现
以下是facenet的python代码,注意需要更改下面的一条程序"cuda" False,因为t527使用的是cpu,芯片到时自带gpu但是cuda用不了,因为cuda是英伟达退出的一种计算机架构。

import matplotlib.pyplot as pltimport numpy as npimport torchimport torch.backends.cudnn as cudnnfrom nets.facenet import Facenet as facenetfrom utils.utils import preprocess_input, resize_image, show_config#--------------------------------------------## 使用自己训练好的模型预测需要修改2个参数# model_path和backbone需要修改!#--------------------------------------------#class Facenet(object):_defaults = {#--------------------------------------------------------------------------## 使用自己训练好的模型进行预测要修改model_path,指向logs文件夹下的权值文件# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。# 验证集损失较低不代表准确度较高,仅代表该权值在验证集上泛化性能较好。#--------------------------------------------------------------------------#"model_path" : "model_data/facenet_mobilenet.pth",#--------------------------------------------------------------------------## 输入图片的大小。#--------------------------------------------------------------------------#"input_shape" : [160, 160, 3],#--------------------------------------------------------------------------## 所使用到的主干特征提取网络#--------------------------------------------------------------------------#"backbone" : "mobilenet",#-------------------------------------------## 是否进行不失真的resize#-------------------------------------------#"letterbox_image" : True,#-------------------------------------------## 是否使用Cuda# 没有GPU可以设置成False#-------------------------------------------#"cuda" : False,}@classmethoddef get_defaults(cls, n):if n in cls._defaults:return cls._defaults[n]else:return "Unrecognized attribute name '" + n + "'"#---------------------------------------------------## 初始化Facenet#---------------------------------------------------#def __init__(self, **kwargs):self.__dict__.update(self._defaults)for name, value in kwargs.items():setattr(self, name, value)self.generate()show_config(**self._defaults)def generate(self):#---------------------------------------------------## 载入模型与权值#---------------------------------------------------#print('Loading weights into state dict...')device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')self.net = facenet(backbone=self.backbone, mode="predict").eval()self.net.load_state_dict(torch.load(self.model_path, map_location=device), strict=False)print('{} model loaded.'.format(self.model_path))if self.cuda:self.net = torch.nn.DataParallel(self.net)cudnn.benchmark = Trueself.net = self.net.cuda()#---------------------------------------------------## 检测图片#---------------------------------------------------#def detect_image(self, image_1, image_2):#---------------------------------------------------## 图片预处理,归一化#---------------------------------------------------#with torch.no_grad():image_1 = resize_image(image_1, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)image_2 = resize_image(image_2, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)photo_1 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_1, np.float32)), (2, 0, 1)), 0))photo_2 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_2, np.float32)), (2, 0, 1)), 0))if self.cuda:photo_1 = photo_1.cuda()photo_2 = photo_2.cuda()#---------------------------------------------------## 图片传入网络进行预测#---------------------------------------------------#output1 = self.net(photo_1).cpu().numpy()output2 = self.net(photo_2).cpu().numpy()#---------------------------------------------------## 计算二者之间的距离#---------------------------------------------------#l1 = np.linalg.norm(output1 - output2, axis=1)plt.subplot(1, 2, 1)plt.imshow(np.array(image_1))plt.subplot(1, 2, 2)plt.imshow(np.array(image_2))plt.text(-12, -12, 'Distance:%.3f' % l1, ha='center', va= 'bottom',fontsize=11)plt.show()return l1

3.代码实现
此代码调用的签名的代码,但其可以直接的去调用图片进行人脸识别。

from PIL import Imagefrom facenet import Facenetif __name__ == "__main__":model = Facenet()while True:image_1 = input('Input image_1 filename:')try:image_1 = Image.open(image_1)except:print('Image_1 Open Error! Try again!')continueimage_2 = input('Input image_2 filename:')try:image_2 = Image.open(image_2)except:print('Image_2 Open Error! Try again!')continueprobability = model.detect_image(image_1,image_2)print(probability)

4.程序运行

运行程序后首先显示的是程序的配置信息,然后可以输入图像对比检测的内容。以下是图像识别的效果和对比的准确率。

五、参考文献

CSDN博客

https://blog.csdn.net/weixin_45939929/article/details/124789487?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-1-124789487-blog-142987324.235^v43^pc_blog_bottom_relevance_base6&spm=1001.2101.3001.4242.2&utm_relevant_index=4

官方源码来源

https://gitcode.com/gh_mirrors/fac/facenet-pytorch/overview

*部分图片来源于网络,如有版权问题请联系删除


米尔电子最新“明星产品”速报







 米尔电子 
领先的嵌入式处理器模组厂商
关注“米尔MYiR”公众号
不定期分享产品资料及干货
第一时间发布米尔最新资讯

米尔电子嵌入式 米尔-领先的嵌入式处理器模组厂商,专业为您提供CPU模组,NXP、ST、全志、XILINX等核心板开
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦