近期,中国科学院合肥物质科学研究院张洪文研究员团队在电学-谱学双模监测气体传感器的创新设计与可控制造方面取得新进展,相关研究成果以“Vortex Engineering on Oxide Bowl-Coated Oxide/Gold Dual-Layer Array for Dual Electrical/Spectroscopic Monitoring of Volatile Organic Compounds”为题发表在Advanced Functional Materials 上。
这项工作得到了国家自然科学基金、安徽省自然科学基金、山东省创新能力提升工程项目、中科院合肥分院院长基金等项目的支持。
传感器是构成现代科技和工程系统的关键核心部件。半导体电导型气体传感器具有高灵敏、快响应和易集成等优点,可以通过实时监测环境中的特征气体,实现对潜在风险或事件的及时诊断和预警。然而,单一的电学信号无法实现复杂体系下目标分子的精确辨识,半导体传感器通常会局限于危险气体的泄露报警。因此,以现有半导体传感器为基础,发展多传感技术高效融合的新原理和新方法,深度拓展并赋予传感器以精准识别能力,有望为精细化环境监测、疾病精准诊疗、工业自动化及国防安保等应用领域提供革命性的解决方案,推动传感器行业的创新和发展。
将实时电气体传感与高度可识别的表面增强拉曼光谱(SERS)技术相结合,用于挥发性有机化合物(VOCs)监测,在保障公众健康和安全方面具有巨大潜力。然而,由于设备的性能和可重复性无法满足实际应用的要求,这项技术仍处于概念验证阶段。为了应对这一挑战,这项研究在掺镍二氧化锡(Ni-SnO2)碗状包覆在Ni-SnO2/Au/SiO2上的双功能双层阵列上采用了涡流工程技术,并开发出了具有高度可重复性的器件制造技术。在双层阵列中,上层Ni-SnO2碗中产生的涡流会减缓挥发性有机化合物的流动,并将其引导至下层Ni-SnO2/Au/SiO2单元之间的间隙,这对SERS和电传感至关重要。实验结果表明,阵列中的涡流效应可实现10 ppb的低检测限,并在数秒内做出响应和恢复。在泄漏源和阵列之间的距离为5米的宽敞环境(约60立方米)中,对苯乙烯进行了约100小时的定量多重监测,证明了该阵列的卓越实用性。基于界面自组装的叠层构筑技术,不仅能实现敏感单元的按需精准调控,而且可以与现有MEMS微纳加工工艺高效融合,实现批量化生产制造,有望为高性能传感器的创新设计和融合制造提供材料基础和技术支撑。
论文链接:
https://doi.org/10.1002/adfm.202402173