实现七位半DDM的要求到底有多高?

亚德诺半导体 2024-11-27 11:00

许多仪器仪表应用要求高准确度,例如数字万用表(DMM)、三相标准表、现场仪表校准器、高准确度DAQ系统、电子秤/实验室天平、地震物探仪以及自动测试设备(ATE)中的源表(SMU)/功率测量单元(PMU)等。这些应用需要以非常高的准确度测量直流或低频交流信号,大多数情况下,实现应用选择的相关元器件需具备低INL、高分辨率、良好的稳定性和可重复性。在所有这些应用中,DMM是最具代表性的应用。


为了构建七位半或更高准确度的DMM,业界通常采用基于分立元器件搭建的多斜率积分ADC。虽然此类ADC能够保证合理的测量准确度,但其设计和调试颇为复杂,因此许多工程师采用商用ADC IC来完成设计。在过去的十多年里,市场上的24位Σ-Δ ADC被广泛应用于六位半DMM的设计中。要想实现七位半准确度和线性度,就必须使用更高性能的ADC。另一个挑战来自基准电压源,深埋型齐纳二极管基准电压源需要复杂的外部信号调理电路才能实现超低温度漂移。


本文将介绍由低INL SAR ADC、全集成式超低温漂精密基准电压源、四通道匹配电阻网络和零漂移低噪声放大器构建的高准确度信号链解决方案。文中进行了准确度的理论分析和计算,可作为实际电路设计和测试的参考和指导。



高准确度DMM的主要直流指标参数

表1-1列出了市场上典型高准确度DMM的主要直流电压测量指标参数。主要的指标参数包括:

  • 输入量程:定义允许的输入信号范围。DMM的各项规格参数和输入量程有关,输入量程有1000 V、100 V、10 V、1 V或100 mV等。10 V为典型输入量程,此时DMM的各项参数性能较优。表1-1为10 V量程对应的各项指标参数。对于其他量程,可使用高准确度电阻将1000 V或100 V信号衰减至10 V量程,或者使用匹配良好的电阻阵列将1 V或100 mV信号放大至10 V量程。

  • 分辨率或位数:分辨率通常以百分比、ppm、或位数来表示。

    • DMM的分辨率大多根据所显示的数字位数(数位)来指定。通常,这可能是由一个整数和0.5组成的数字,例如六位半。半位可以显示0或1。

    • 典型的六位半表在1 V测量量程最高可以显示1.199999。典型的七位半仪表在10 V测量量程最高可以显示11.999999。

    • 对于某些产品,例如ADC,分辨率通常以位数来表示。例如,24位ADC会提供2^24个不同的值,即16777216个值。分辨率用数位表示为lg(16777216) = 7.2。请注意,24位ADC的有效分辨率通常小于24位,这意味着其有效数位小于7.2。

  • 准确度:准确度用于衡量测量结果与真实值之间的一致程度。

    • 许多因素都会影响准确度,例如噪声、失调误差、增益误差和线性度等。就模拟信号链而言,信号链上的每个元器件都有这些误差,并且可能影响整个系统的误差或准确度。

    • 准确度指标可能随温度和时间而变化。24小时准确度、1年准确度和温漂可用于描述随时间和温度变化的准确度性能。这些参数决定了设备的稳定性和可重复性,即测量值是否随时间变化以及多次测量值是否一致。

    • 1-1中的准确度是在100 PLC或10 PLC (5 Hz)的读取速率下测试的,其中,PLC是工频周期,100 PLC表示一个测量周期为100/50 Hz,即2秒。

  • 线性度:用于衡量设备的输入和输出的线性关系。线性度可能会影响系统的准确度。

  • 噪声:系统噪声决定了DMM设备的最低有效数位。通常,此参数在100 PLC或10 PLC下进行测试。

    • 对于表1-1中所示的七位半DMM2,10 V输入量程0.1 ppm,则噪声为1 μVrms。这意味着,当输入端短路时,最低数位(1 μV)读数可能会发生变化,读数值为00.00000X(X会变化)。


对于高准确度信号链,信号链上的转换器、基准电压源、精密放大器和匹配电阻网络都会影响系统噪声和准确度。更多细节将在后续章节中讨论。


表1-1. 市场上的高准确度DMM



ADC

ADC用于将模拟信号转换为数字码,是模拟域和数字域之间的桥梁。


表1-2列出了10 V输入量程下不同DMM的ADC有效分辨率要求。请注意,市场上大多数DMM的实际分辨率数位均小于理想分辨率数位。例如,七位半DMM2的实际分辨率为7.1数位(DMM显示范围为12000000),ADC有效分辨率至少需要为24.5位(考虑到信号有正负,2的24.5次幂= 23726566,接近24000000),10 V输入量程的噪声应小于1 μV rms。


表1-2. DMM 对ADC有效分辨率的要求


表1-3列出了ADI公司高分辨率ADC的噪声指标和有效分辨率。

  • 对于六位半应用, AD7190 和 AD7175-2是很好的ADC选择。

  • 对于七位半应用, AD7177-2 和LTC2500-32是很好的ADC选择。

  • AD4630-24的INL为±0.1 ppm典型值(±0.9 ppm最大值),显著优于其他ADC。双通道、同步采样、2 MSPS SAR ADC AD4630-24同时具有低噪声、低零漂和低增益温漂特性,是七位半信号链解决方案的最佳选择。

    • AD4030-24是单通道2 MSPS ADC, AD4632-24是双通道500 kSPS ADC, AD4032-24是单通道500 kSPS ADC。所有这些器件的INL性能都相似,单通道器件的噪声性能更优。


表1-3. ADI高分辨率ADC的噪声和分辨率指标



基准电压源

基准电压源决定了系统准确度。温漂(TC)、时漂(LTD)、噪声和初始准确度是基准电压源的主要指标参数。


LTZ1000和LM399具有良好的温漂和时漂指标参数,已经被广泛应用于高数位DMM。支持高准确度的基准电压源还有很多选择:

  • ADR1399的噪声和负载调整指标优于LM399。

  • ADR1001是一款完全集成、超低温漂、深埋型齐纳二极管精密 基准电压源。ADR1001将LTZ1000所需的整个信号调理电路集成到单个芯片中,使得整体解决方案面积显著减小,这简化了设计流程。

  • ADR4550D输出电压为5V,初始准确度高。D级的温漂和时漂指标参数优于A/B/C级。


所有这些基准电压源都是高准确度信号链的出色选择。


表1-4. 基准电压源指标比较表



放大器

许多运算放大器的某些误差指标在ppm量级,但没有一个运算放大器的所有误差指标都能达到ppm量级。例如,斩波放大器可提供ppm级的失调电压、DC线性度和低频噪声,但其输入偏置电流和线性度随频率误差较大。双极性放大器具有低宽带噪声和良好的线性度,但其输入电流仍可能导致内部电路误差。MOS放大器具有出色的偏置电流,但通常在低频噪声和线性度方面存在缺陷。


在实际电平搬移、衰减/放大和有源滤波器电路中,要满足±5 V信号、适用于1 kΩ环境并达到1 ppm线性度,运算放大器需满足一些基本要求,如表1-5第二列所示。


除了表1-5列出的参数外,温漂和时漂也非常重要。ADA4522-2和ADA4523-1采用自校准电路,具有低温漂(最大0.01 µV/°C)以及低 时漂。


对于目标信号频率接近斩波放大器开关频率的应用,ADA4510-2可能是个好的选择,其大多数指标都足够好,可以用在信号链的任何位置。


表1-5. ppm准确度所需的运算放大器指标及数值列表



匹配电阻网络

匹配电阻网络 LT5400和 LT5401具有非常低的匹配温漂和时漂指标,可与放大器配合使用,根据不同应用的要求配置模拟前端的增益。表1-6为ADI公司的匹配电阻网络产品。对于LT5400,表中列出的是B级指标。LT5400 A级的绝对电阻匹配比更优,其匹配温漂和时漂与LT5400B相同。


表1-6. 匹配电阻网络



AFE电路(增益固定)

图1-1是 LTspice® AFE电路,将±10 V信号转换为ADC容许输入范围内的2.5 V ± 2.5 V差模信号。

  • U1和U3是缓冲器,用于增加AFE电路的输入阻抗。

  • VCOM提供2.5 V电压,将AFE输出偏置为正信号。

  • LT5400-7(2×1.25k、2×5k)将信号衰减1/4,以使信号处于ADC输入范围内。

  • 放大器配置为环路内补偿电路,以驱动SAR ADC。

  • 蓝色曲线(±10 V输入)和红色曲线(±5 V差分输出)是LTspice的仿真结果。


图1-1. LTspice AFE电路


0.1 Hz至~10 Hz时,AFE电路的噪声仿真结果为32 nV rms,大概是98 nV rms ADC噪声的1/3。



24小时准确度分析(Ta = 23 ± 1°C)

影响准确度的主要因素是两类误差:失调误差和增益误差。失调误差决定量程的不确定度,增益误差决定读数的不确定度。元器件贡献的绝对误差可以在系统级进行校准,而与温度和时间相关的误差则难以校准。


24小时准确度主要由元器件的温度相关误差决定,通常规定为±(读数的百分比+量程的百分比)或±(读数的ppm+量程的ppm)。


失调误差

失调误差造成的不确定性与信号无关。例如,假设输入信号为0,最终的输出读数可能因放大器的失调漂移误差而有所不同。这意味着放大器的失调漂移误差会引起量程的不确定性。除了放大器的失调漂移之外,还需要考虑和分析电阻网络的温漂、ADC的零点漂移以及ADC的INL。(请注意,ADC INL被认为是失调不确定性,因为其非线性峰值未知)。


图1-2用于仿真LT5400-7的误差贡献:

  • 理论上,当输入为0 V时,AFE电路的输出也应为0 V。

  • 假设R8/R9和R1/R7之间的匹配度为1 ppm,则输出将为-0.5 μV,即-0.1 ppm误差。

  • 假设R13/R12和R11/R10之间的匹配度为1 ppm,则输出将为-1.0 μV,即-0.2 ppm误差。

  • LT5400-7的最大电阻匹配比温漂为±1 ppm/°C,因此其失调误差贡献为±0.2 ppm/°C。


图1-2. 仿真LT5400-7匹配温漂带来的失调误差


表1-7总结了不同误差源带来的失调误差。

  • 总温漂误差 = √0.0022 + 0.0052 + 0.22 + 0.0072 ≈ 0.2 ppm/°C.

  • 考虑到温度不确定度为±1°C,故总温漂误差为0.2 ppm。

  • 加上0.9 ppm ADC INL误差,总失调误差 = √0.22 + 0.92 ≈ 1 ppm.


表1-7. 失调误差源分析


增益误差

增益误差造成的不确定性与信号大小有关。例如,假设输入信号为0,最终输出读数可能不会因基准电压源失调漂移误差而有所不同。这意味着基准电压源的失调漂移误差会引起读数的不确定性。除了基准电压源的失调漂移之外,还需要考虑和分析电阻网络的温漂、ADC的增益误差漂移、基准电压源的滞回误差以及放大器的CMRR。


图1-3用于仿真LT5400-7贡献的增益误差:

  • 理论上,当输入为10 V时,AFE电路的输出(OUT+OUT-)应为-5 V。

  • 假设R8/R9与R1/R7之间的匹配度为1 ppm,R13/R12与R11/R10之间的 匹配度为1 ppm,则输出为–3.5 µV,若扣除–1 μV失调误差,则增益误差为–2.5 μV。

  • LT5400-7的最大电阻匹配比温漂为±1 ppm/°C,因此增益误差贡献为±0.5 ppm/°C。

图1-3. 仿真LT5400-7匹配温漂带来的增益误差


ADA4523-1的CMRR最小值为140 dB,在±10 V输入下,缓冲器的Vcm变 化为±10 V,U4的Vcm变化为0 V至~4 V,有限的CMRR可能会随着输入变化而引起额外的增益误差。


温度变化为±1°C,因此可以忽略基准电压源的温度滞回误差。在工作温度范围较宽的其他应用中,需要考虑基准电压源滞回误差。


表1-8总结了不同误差源带来的增益误差。

  • 总温漂误差 = √0.52 + 0.22 + 0.072 ≈ 0.54 ppm/°C.

  • 考虑到温度不确定度为±1°C,故总温漂误差为0.54 ppm。

  • 加上放大器CMRR误差和基准电压源温度滞回误差,总增益误 差 = √0.542 + 0.12 + 0.12 ≈ 0.6 ppm.


表1-8. 增益误差源及分析


根据分析,对于由ADA4523-1 + LT5400-7 + AD4630-24 + ADR1001组成的 信号链,估计24小时准确度 (Ta = 23 ± 1°C) 为 ±(0.6 ppm + 1.0 ppm)。从表1-7和表1-8可以得出如下结论:放大器的温漂、基准电压源的温漂、电阻匹配温漂和ADC INL对于整个系统的准确度都很重要。



1年准确度(Ta = 23 ± 5°C)

对于仪表来说,准确度会随着时间的推移而降低。这是因为元器件参数会随时间而变化,不确定性会按照时间的平方根增加。仪表准确度与时间的指标非常重要。通常将其规定为±(读数的百分比+量程的的百分比)或±(读数的ppm+量程的ppm),时间可以为30天、90天、1年,工作环境温度为23 ± 5°C。


温度引起的失调误差和增益误差

参考表1-7,

  • 总温漂误差 = √0.0022 + 0.0052 + 0.22 + 0.0072 ≈ 0.2 ppm/°C.

  • 考虑到温度不确定度为±5°C,故总温漂误差为1 ppm。

  • 加上0.9 ppm ADC INL误差,总失调误差 = √12 + 0.92 ≈ 1.35 ppm.


参考表1-8,

  • 总温漂误差 = √0.52 + 0.22 + 0.072 ≈ 0.54 ppm/°C.

  • 考虑到温度不确定度为±5°C,故总温漂误差为2.7 ppm。

  • 加上放大器CMRR误差和基准电压源温度滞回误差,总增益误 差 = √2.72 + 0.12 + 0.12 ≈ 2.70 ppm.


根据分析,对于由ADA4523-1 + LT5400-7 + AD4630-24 + ADR1001组成的 信号链,估计准确度(Ta = 23 ± 5°C)为± (2.70 ppm ± 1.35 ppm)。


失调误差和增益误差随时间的变化

不同元器件对时漂指标的测试条件不同。假设全年的工作温度为28°C,则可以使用Arrhenius方程推导出28°C下的加速因子。加速因子计算公式如下



Eaa为0.68 eV;kB为玻尔兹曼常数8.62×10-5eV/K;Top 和 Tstress 分别为工作温度和应力测试温度,单位为K。


以LT5400为例,数据手册显示2000小时、35°C下,其电阻匹配比的时漂指标参数为< 2 ppm,可使用式1来计算其1年在28°C下的漂移值。加速因子:



这意味着28°C时,2000×1.81 = 3629小时的漂移指标参数为< 2 ppm,那么 1年(8760小时)后,LT5400可能会漂移 √8760/3629 × 2 ppm = 3.1 ppm。


同理,ADR1001在1000小时、25°C下的时漂指标参数为4 ppm,1年后 ADR1001可能会漂移13 ppm。ADR1399在1000小时、25°C下的时漂指标参数为7 ppm,1年后ADR1399可能会漂移23 ppm。


ADA4523-1的平均时漂<0.03 μV。


表1-9显示,28°C时1年后的估计准确度为± (13.1 ppm + 0.62 ppm)。


综合温度带来的不确定性± (2.70 ppm + 1.35 ppm) (Ta = 23 ± 5°C),最终 1年准确度为:± (13.4 ppm + 1.5 ppm)。


表1-9. 1年后误差分析


表1-10总结了ADA4523-1 + LT5400-7 + AD4630-24 + ADR1001的理论准确度指标参数,与市场上的典型七位半DMM的指标参数相近。


表1-10. 比较典型DMM与本解决方案的指标参数


我们的理论分析和计算说明,利用0.1 ppm INL 2 MSPS SAR ADC AD4630、全集成超低温漂ADR1001、低噪声零漂移ADA4523-1和1 ppm/°C LT5400等器件构建的信号链可以实现出色的准确度性能。





👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦