什么是实时频谱仪?超外差接收机的最大缺点是什么?实时频谱仪与非实时频谱仪的区别?

原创 Keysight射频测试资料分 2024-11-26 06:57

现在无线通信环境、电磁频谱复杂,常见的电磁频谱信号有移动网络、Wi-Fi、蓝牙、RFID、跳频扩频电台、以雷达为代表的脉冲信号等等,这些信号的存在、叠加使得整个频谱背景变得非常复杂,对监测分析的频谱仪要求越来越高。常规的扫频式频谱仪已经难以满足当前的测量需求;而实时频谱仪可以滿足这样的需求,能够快速实时捕捉、分析掩盖在背景噪声中的瞬态信号。

传统上一般将频谱仪分为三类:扫频式频谱仪,矢量信号分析仪和实时频谱仪。实时频谱分析仪是随着现代FPGA技术发展起来的一种新式频谱分析仪,与传统频谱仪相比,它的最大特点在于在信号处理过程中能够完全利用所采集的时域采样点,从而实现无缝的频谱测量及触发。由于实时频谱仪具备无缝处理能力,使得它在频谱监测,研发诊断以及雷达系统设计中有着广泛的应用。

什么是实时频谱仪(RTSA)?

频谱分析仪是射频微波设计和测试工作中的常用仪器,它能够帮助电子工程师完成频谱观测、功率测试以及复杂信号解调分析等工作。所谓实时频谱仪(Real-Time Spectrum Analyzer - RTSA)就是指能实时显示信号在某一时刻的频率成分及相应幅度的分析仪,它能够帮助电子工程师完成频谱观测、功率测试以及复杂信号解调分析等工作。

实时频谱仪采用快速傅里叶变换(FFT)来实现频谱测试。在信号处理过程中能够完全利用所采集的时域采样点,从而实现无缝的频谱测试及触发。由于实时频谱仪具备无缝处理能力,使得它在频谱监测,研发诊断以及雷达系统设计中有着广泛的实时频谱仪提供丰富的显示功能,包括光谱图、概率密度谱和时间功率等多种显示方式。

"利用是德科技实时频谱仪(RTSA)查看、捕获并分析罕见信号,了解更多信息。多款不同型号的实时频谱仪搭配应用软件让你的测量任务更加精准便捷。"

RTSA实时频谱仪图片

长久以来,因为实时频谱解决了传统频谱仪不具备的瞬态信号分析功能,从而被很多人推崇,甚至带上了无所不能的光环。认为实时频谱能够看到一切瞬态信号,并且精确无比。

为了更好地理解实时频谱仪 RTSA功能,我们务必看一看传统的频谱分析仪接收机的体系结构及其优缺点。

扫描二维码,下载文章:在无线测试中进行实时频谱分析

"了解什么是实时频谱分析,以及实时频谱仪可以利用哪些强大功能帮助您更快完成无线系统设计。"


实时频谱仪的特性

实时频谱仪普遍采用快速傅里叶变换(FFT)来实现频谱测量。FFT技术并不是实时频谱仪的专利,其在传统的扫频式频谱仪上亦有所应用。但是实时频谱仪所采用的FFT技术与之相比有着许多不同之处,同时其测量方式和显示结果也有所不同:

高速测量:频谱仪的信号处理过程主要包括两步,即数据采样和信号处理。实时频谱仪为了保证信号不丢失,其信号处理速度需要高于采样速度。

恒定的处理速度:为了保证信号处理的连续性和实时性,实时频谱仪的处理速度必须保持恒定。传统频谱仪的FFT计算在CPU中进行,容易受到计算机中其它程序和任务的干扰。实时频谱仪普遍采用专用FPGA进行FFT计算,这样的硬件实现既可以保证高速性,又可以保证速度稳定性。

频率模板触发(Frequency Mask Trigger):FMT是实时频谱仪的主要特性之一,它能够根据特定频谱分量大小作为触发条件,从而帮助工程师观察特定时刻的信号形态。传统的扫频式频谱仪和矢量信号分析仪一般只具备功率或者电平触发,不能根据特定频谱的出现情况触发测量,因此对转瞬即逝的偶发信号无能为力。因此传统扫频频谱仪和实时频谱分析仪各自有着自己的应用场景。

丰富的显示功能:传统频谱仪的显示专注在频率和幅度的二维显示,只能观察到测量时刻的频谱曲线。而实时频谱仪普遍具备时间,频率,幅度的三显示,甚至支持数字余辉和频谱密度显示,从而帮助测试者观察到信号的前后变化及长时间统计结果。

实时频谱仪主要应用

实时频谱仪能够在实时分析带宽之内无缝地进行FFT计算和频谱触发,因此十分有利于瞬态信号的捕获和分析,在频谱监测,雷达系统设计,跳频电台测试,振荡器研发等领域有着广泛的应用。

以下是几种典型应用场景下的测试效果:

实时频谱仪跳频雷达信号检测

实时频谱仪脉冲信号时域频域分析

实时频谱仪振荡器锁定过程分析


扫描调谐接收机-传统的频谱分析仪接收机的体系结构

图 4. 超外差频谱分析仪/扫描调谐频谱接收机

超外差频谱分析仪也称为扫描调谐频谱分析仪。外差意味着混频,在这个系统中,射频输入信号与本振信号混频,将输入信号从较高频率转换为较低频率,即中频(IF)。信号幅度通过包络检测器检测并显示为垂直点。

为了控制水平/频率轴的显示,我们使用斜坡/扫描发生器来控制运动,它还可以将本振调谐到预期频率。通过设置扫描时间和频率扫宽,可以控制本振调谐速率。频谱分析仪的前端配有信号调理电路,包括衰减器和预选器(低通滤波器)。这些电路的作用是确保输入信号在到达混频器之前处于最佳电平。前端预选器有助于阻止带外噪声,从而改善接收机的动态范围和灵敏度。调谐本振为接收机提供更好的选择性。它可以很容易地阻止不需要的带外信号,这就是超外差接收机具有出色动态范围的原因。

由于斜坡发生器以固定速率进行扫描,因此可以在频率扫宽上精确控制扫描时间。通过控制扫描速率,接收机能够以超过快速傅里叶变换(FFT)分析仪的扫描速度扫描超大扫宽。

超外差接收机的最大缺点是它可能错过间歇信号内容,尤其是宽带数字调制信号。
另一个问题是,在窄分辨率带宽(RBW)下扫描时间会明显变长


扫描二维码,下载文章:频谱仪原理

FFT分析仪/接收机

图 5. FFT频谱分析仪速览

FFT分析仪/接收机专门用于处理宽带信号。它的前端有一个数据块转换,数据块转换的大小由中频带宽和 ADC采样率决定。本地振荡器(LO)不是连续进行调谐,而是在频率扫宽内步进调谐。在本振调谐到正确的频率后,接收机通过模数转换器(ADC)对数据进行采样,再将采样结果转换为 I/Q 对(同相正交),并放入适当的 FFT时间帧内,然后将时域帧转换为 FFT频谱数据,最后将频谱结果发送给显示器,如此周而复始地执行这一过程。这是一个串行操作,因此在两次屏幕更新之间会间隔一段时间,输入端在此期间内不会捕获信号。这段时间称为静寂时间,持续时间的长度不可预计。

由于它是数据块转换,因此数据块或信息带宽内的信号(例如数字解调信号)将被完整捕获以供进一步分析。FFT 是分析宽带数字信号的理想选择;它可以基于信号技术指标重现数字接收机特性,如 LTE信号测试。

由于 FFT引擎无法在特定时间帧内完成其操作,因此无法精确控制 FFT接收机的扫描时间。
如果信号带宽大于接收机的信息带宽,则需要对信号进行拼接,这样可能导致丢失部分宽带信号内容。

实时频谱仪(RTSA)

图 6. 实时频谱仪

实时频谱仪是一种没有静寂时间的 FFT分析仪。接收机停留在感兴趣的频率扫宽内,该扫宽受到实时频率带宽的限制,没有调谐或步进。它具有足够大的信号缓冲区、FFT计算工具和显示工具,可在后续数据帧进入之前处理完上一个数据帧并清空存储器。

在其捕获带宽内,它可以检测各种瞬态信号、动态信号和射频脉冲

但是,实时频谱仪RTSA受到带宽的限制。如果接收机试图测量超出其实时带宽的信号,则必须调谐本振,此时它不再是实时或无间隙的。

由于实时频谱仪 RTSA 没有调谐,要检测的信号可能不会位于中心频率,并且它检测到的信号电平可能不像使用传统频谱分析仪时那么准确,因此我们不建议采用实时频谱仪 RTSA 来进行准确的功率测试。

实时频谱仪RTSA信号流和数据处理

实时频谱仪RTSA 的基础是 FFT处理,但它没有 FFT分析仪的静寂时间。它处理和显示信号的速度快于 ADC 在给定信息带宽下填满循环缓冲区的速度。当然,实时频谱分析仪RTSA 也有不足之处,它始终采用固定调谐并且带宽有限。在给定带宽下,它不会错过任何信号。在检测瞬态信号时,它是理想的选择。

除了超快速的 FFT计算工具和足够大的循环存储缓冲区之外,实时频谱仪RTSA 中最关键的技术称为重叠 FFT。采用重叠 FFT,RTSA 能够可靠地检测具有随机占空比的窄脉冲

图 7. 实时频谱分析仪RTSA信号处理流程

以上是实时频谱仪 RTSA信号流。首先,ADC 从中频链路中采样数据,并将它们打包到每个数据帧内。

实时频谱RTSA 不是一次处理一帧的原始数据,而是将原始数据帧(数据 1、数据 2、数据 3 ……)重新排列成新的 FFT 帧(T1、T2 ......)。从 T2 开始,RSTA 会从 T1 获取一部分样本并将其与新数据(数据 2 获取的一部分)合并,构成 T2;同理,从前面的 T2 获取一部分样本,再从数据 2 获取一部分新样本,构成 T3。这种操作叫做重叠 FFT,它保证发生在数据 1 和数据 2 边缘的信号会正确位于下一个 FFT 的中心,以确保正确检测到信号。

将信号移动到帧中心是为了防止窗口功能滤除掉数据帧/时间记录边缘的有用信号。为了便于说明,我们进行 FFT 计算和显示的速度是将数据保存到缓冲区速度的两倍。

FFT重叠问题

为了理解何为重叠处理,首先可以看下图。

观察到一段数据记录完成后,立刻进行FFT处理,其中信号采集的时间比FFT计算时间长得多。仔细观察便可发现,当一个FFT处理流程结束后,大部分时间都处于闲置状态。如果此时不是等待一个全新采集信号,而是将目前最新的信号记录与一些旧数据重叠,那么在计算FFT的同时将获得一个新的频谱,下图中说明了这种重叠处理。


为了了解重叠处理的好处,我们可以看一个例子。
如计算设备每隔十分之几秒才能更新一个FFT计算得到的频谱,因为其中没有涉及重叠处理,分辨率被限制在10Hz左右。如果需要增大频率分辨率,则需要增大采样率,同时减小FFT的计算时间,而这样会大大增加硬件的成本。如果是通过重叠处理,则可以把分辨率无限减小,这样会产生一个问题:由于重叠的信号包含前段采集的旧数据,因此并不完全正确,不过其确实可以指示信号变化的方向和幅值,而且准确的频谱也可以等后续非实时计算得到。总结来说,重叠处理能够在当前硬件的条件下,对分辨等参数做一定程度的补充。

FTT重叠极大地提高了捕获窄脉冲或瞬态信号的概率。在下面的屏幕显示中,一个显示接收机在两次更新之间有静寂时间而没有 FFT重叠,另一个显示的是有重叠 FFT 的RTSA。

图 8. 没有 FFT重叠,屏幕更新之间存在静寂时间

图 9:无间隙进行捕获的 FFT重叠

长久以来,因为实时频谱解决了传统频谱仪不具备的瞬态信号分析功能,从而被很多人推崇,甚至带上了无所不能的光环。认为实时频谱能够看到一切瞬态信号,并且精确无比。

然而从实时频谱的具体实现技术出发,它并不是万能的。准确地说,实时频谱的准确测量对于信号的持续时间是有要求的,对于少数低于这个要求的信号,实时频谱也无法完全准确地进行测量。

下面我们仔细描述一下这个问题。

什么是100%截获概率(POI)?

在无线射频信号分析中,截获概率(POI)表示信号有可能被截取和充分捕获、分析所需要的存在时间。

作为参考,加拿大出口管制指南2013年12月"提供了以下定义:“发现概率也称为截获概率或捕获概率。100%发现概率的持续时间等于特定电平测量不确定度所需的最小信号持续时间。

Keysight应用说明“理解和应用实时频谱分析中的截获概率'在下面的摘录中提供了进一步的说明:在信号分析仪的性能Q参数中,POI通常表示为一个信号的最小持续时间,要求该信号若高于仪器的噪声系数,则该信号可以以100%的概率观察到并进行准确地测量。

  • 前提:设置FMT的触发电平并使用FMT去触发一个瞬态的信号

  • 频率模板触发 Frequency Mask Trigger(FMT)触发后频谱仪测到的瞬态信号幅度与其稳态时相同

  • 要满足上述条件,信号必须持续一定时间,该时间称为100%截获概率下的最短持续时间。

通常使用的窗函数以及不同的特性

五种主要的窗口函数

•也叫加权函数

•用于抑制时域旁瓣

•边带影响: 损伤信噪比

Hamming Window 汉明窗的原理

汉明窗口 (Hamming Window)是一种常用的数字信号处理技术,为了提高分辨率,需要对接收到的信号进行一定的处理。其中一个重要的步骤是快速傅里叶变换 (Fast Fourier Transfomm, FFT),通过FFT可以将回波信号从时域转换到频域,以便更好地分析和处理。然而,在进行FFT时,由于信号长度有限,会导致频谱上出现泄漏(spectral leakage)现象,即信号在频域上呈现出明显的畸变,初值和谐波等非理根特征。为了减少这种泄漏,可以采用汉明窗口来对原始信号进行加商处理,其主要作用是在时域上对信号进行平滑加权,抑制信号的端点泄漏,以减小FFT过程中信号的泄漏现象,从而得到更精确的频域信息。

时域和频域

时域和频域是信号处理中两个基本的概念:

时域(Time Domain)指的是信号随着时间变化的情况,即信号在时间轴上的表现形式。例如音频信号在时域下的图形可以显示声音如何随着时间变化,而图像信号在时域下的图形可以显示图像的像素值如何随着时间变化。

频域 (Frequency Domain)指的是信号在频率空间中的表现形式,表示信号包含哪些频率成分及其对应的强度。以音频信号为例,在频域下的图形(一般称为频谱)可以显示声音分布在哪些频率及其比例,即能够反映出声音中各个音调的高低与响度大小,将时间与频率进行有效分离,方便对信号进行后续处理。

在数字信号处理中,信号通常会在时域和频域之间进行转换。例如,通过傅里叶变换(FFT)可以将时域的信号转换到频域中,从而更好地理解信号的特性。在频域下,信号可以通过浪波等方法进行处理,然后再通过傅里叶逆变换(IFT) 口到时域中进行应用。

什么是多普勒效应  (Doppler effect)?

多普勒效应 (Doppler erfect) 是指当波源与观察者相对运动时,观察者接收到的波的频率与波源发出的频率不同的现象。在多普勒效应中,当波源向观案者移动时,观案者会接收到比波源发出时重高的频率,这被称为蓝移 (blue shift);反之,当波源远离观察者时,观察者接收到比波源发出时更低的频率,这被称为红移(red shirt)。蓝移和红移的现象可以在各种波动中观察到,如声波电磁波等。

多普勒效应在现代科技中有看广泛的应用,如测速雷达、医学超声诊断、天文学等。在卫星通信中,由于卫星和地面站之间的相对运动,多普勒效应会导致信号的频率发生变化,因此必须对信号进行补偿以确保正常通信。

Hamming Windor 汉明窗函数和频响

时域和频域加窗的效果是相同的-减小频率泄露

汉明窗函数的形状(左)及其相关的频率响应(右)

重叠的FFT处理

重叠的FFT

实时频谱仪的基本原理是分段采集数据,然后进行高速FFT处理。

我们知道,每次FFT处理的时域样点都是有限长度,而有限的时间长度在频域上将产生周期延拓或者说频谱泄露。因此FFT处理之前都需要对时域样点就行加窗处理,加窗处理将导致窗两边的数据权重降低甚至归零,导致部分信息丢失。

为了补偿加窗造成的信号丢失,实时频谱仪中普遍采用重叠帧的FFT处理。两段相邻的时域数据将部分重叠然后进行FFT计算,这样两段相邻数据的窗函数可以相互补偿,从而保证信号不丢失。

Keysight的实时频谱仪中,将在FFT速度和采样速率允许的情况下进行最大程度的重叠处理。

•FFT时域截短造成频域扩展
•通过加窗抑制频谱扩展
•加窗造成部分数据权重降低•通过overlap来补偿加窗造成的分量权重降低

实时频谱仪中FFT的长度一般是固定的1024点,而窗的宽度是可以调整的(32-1024)。信号如果需要保证幅度被准确测量,那么其持续时间最短需要从第一个窗的左边缘一直到第二个窗的右边缘。因此从图上可以看粗,信号最短持续时间取决于FFT的长度,重叠的点数以及所选择的窗的宽度。减小窗的长度,可以降低信号最短持续时间的要求。

下面用一个例子阐述合成窗是如何重建信号的。下图是一个时域转频域加窗的过程。

可以看到,经过加窗后,能量有所衰减。加一个合成窗,且overlap-add,便可以补回能量。如下图所示:

可以定性看到,在经过overlap,边界处的信号补回原始幅度了。此处是比较巧妙,分析窗用hamming窗,overlap采用50%,则在合成的时候,就不需要额外加窗了,直接overlap-add就好。

根据完美重建公式,合成窗的选择,不仅跟分析窗有关,还和overlap有关。不同的overlap要采用不同的合成窗。

若信号持续时间短于一个FFT的长度

刚才我们讲到为了保证幅度精度,信号有一个最短持续时间。那么当信号持续时间低于这个阈值时,会发生什么情况呢?

我们知道时域样点的能量,在经过FFT变换之后将在频域展开,其能量是守恒的。不管时域数据持续多长,FFT之后再频域都是1024个点。因此,当信号持续时间短于一个FFT长度时,它在频域的功率将降低。降低的程度取决于途中红色区域的面积和浅蓝色区域面积的比例。即2个条件:首先是信号持续时长,其次是信号在窗函数中的位置。同样的信号时长,出现在窗边缘和窗中心,其FFT后的功率将差异很大。

•FFT之后得到的功率将降低
•功率降低的程度取决于两个因素:信号持续时长以及出现的位置
•综合来看,就是下图中深红色面积与蓝色面积之比

下面我们将看到仿真计算结果。

当四分之一格FFT长度的信号出现在窗中央时,其功率将下降4.125dB;但是当信号出现在窗边缘时,其功率将下降29.129dB。

例如:

•信号时域采样率为200 MHz, 1024 点FFT
•完全保证幅度精度的信号持续时间为5.12 us
场景1 •信号出现在窗的正中央,时长为 ¼ 窗长度(蓝色)
场景2 •信号出现在窗的左边缘,时长为 ¼ 窗长度(红色)

经过FFT之后的频谱中功率下降:

场景1: -4.125 dB
场景2: -29.129 dB

实际用信号源也很好验证

利用信号源的脉冲功能输出一个固定幅度的脉冲,通过调节脉宽,观察不同脉宽下实时频谱仪上测到的信号频谱,可以发现当脉宽低于一定程度的时候,信号功率将不同程度地下降。

同一个信号源输出等功率脉冲:

•脉宽大于特定时长时功率准确
•脉宽逐步减小时,频谱上测到的功率逐步降低

"利用是德科技实时频谱仪(RTSA)查看、捕获并分析罕见信号,了解更多信息。多款不同型号的实时频谱仪搭配应用软件让你的测量任务更加精准便捷。"

扫描二维码,下载文章:
如何使用实时频谱分析(RTSA)应对外场射频和微波干扰的挑战?


无线测试中如何进行实时分析?

频谱分析仪和信号分析仪有什么区别?

频谱分析仪和信号分析仪这两个术语往往可以互换使用,不过两者在功能和能力上还是有一定区别。频谱分析仪主要用于测量输入信号的幅度与频率的关系。信号分析仪则是同时测量输入信号在单个频率上的幅度和相位。当今的分析仪可进行更全面的频域、时域和调制域信号分析,用“信号分析仪”来描述更为准确。

频谱分析仪是什么?

  • 频谱分析仪测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。

  • 矢量信号分析仪测量在仪器的中频带宽内输入信号在单一频率上的幅度和相位。其最主要的用途是对已知信号进行通道内测量,例如误差矢量幅度、码域功率和频谱平坦度。

  • 信号分析仪同时执行频谱分析仪和矢量信号分析仪的功能。

频谱分析仪有什么用途?

频谱分析仪可在整个频率范围内测量输入信号的幅度与频率的关系,从而确定信号的功率。频谱分析仪能够进行噪声系数和信噪比(SNR)等测试,表征器件的性能及其对整体系统性能的贡献。

信号分析仪能够做什么?

信号分析仪能够测量输入信号在单个频率上的幅度和相位。信号分析仪将扫频调谐频谱分析仪的超大动态范围与矢量信号分析仪(VSA)的强大功能相结合,能够执行信道内测量,例如需要幅度和相位信息的误差矢量幅度(EVM)测量。

是德科技 www.keysight.com.cn

评论
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 178浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 93浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 77浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 60浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 137浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 54浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 112浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 128浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 97浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦