北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体电解质

锂电联盟会长 2024-11-27 10:50

点击左上角“锂电联盟会长”,即可关注!

研究背景

离子电池(LIBS)因其可回收性、高能量和高功率密度而广受赞誉,使其在能源储存系统、便携式电子设备和电动汽车等各种应用中非常受欢迎。然而,使用易燃液体电解质和商用聚合物分离器的安全风险对其广泛应用造成严重限制。在这种情况下,采用固体电解质的全固态锂电池为提高安全性提供了巨大的潜力。在不同的粒子中,硫化物的离子导电性是非常好的。此外,硫化物SES还具有机械健壮性等优点,有可能稳定锂金属阳极,从而使高能量密度SSLBS的发展能够满足电动汽车中高范围的需求。但基于硫化物的全固态电池商业化仍面临诸多挑战,包括化学不稳定性(对潮湿空气和极性有机溶剂)及低能量密度(因SE层过厚)。为提高稳定性,表面修饰方法(如LiF等)存在难以保持材料性质均一性及影响离子电导率的问题。元素掺杂是较实用方法,软酸阳离子掺杂及阴离子部分替换可提高稳定性,合理掺杂还可改变离子输运结构,形成稳定界面层并增强对锂金属负极的稳定性。

成果简介

北京科技大学范丽珍教授团队提出In和F共掺杂策略,制备出高离子电导率、溶剂与电化学稳定性的硫化物固体电解质,通过湿法制膜实现高能量密度全固态电池。其中 6% InF3掺杂(Li5.82P0.94In0.06S4.7Cl1.12F0.18,简称LPSCInF)具有高化学稳定性,组装的对称电池在室温下具有2.5 mA cm−2的超高临界电流密度。在1 mA cm−2的电流密度下,Li/LPSCInF/Li对称电池能够稳定循环超过1000个小时。此外,In和F共掺杂的硫化物SE对水分子和有机溶剂具有很高的化学稳定性。组装的LiCoO2/LPSCInF膜/Li电池在0.1 C条件下经过500个周期后具有83.2%的长循环寿命和高倍率性能。FeS2复合正极及固态电解质膜构建的全固态锂金属电池具有410 Wh kg−1的超高能量密度和优异的循环性能(3.8 mAhcm−2)。

研究亮点

1.通过提出In和F共掺杂策略,制备出高离子电导率、溶剂与电化学稳定性的硫化物固体电解质,通过湿法制膜实现高能量密度全固态电池。

2.In和F共掺杂的硫化物SE对水分子和有机溶剂具有很高的化学稳定性。

3. 制备了由LPSCInF和PIB粘结剂构成的硫化物SE膜。组装的全固态电池首圈放电比容量为135.7 mAh g−1,初始库仑效率为86.2%,经过500圈循环后容量保持率仍然高达83.2%。

图文导读

通过传统的固相烧结方法合成了In和F共掺杂的锂硫化物固态电解质Li5.7+2xP1-xInxS4.7Cl1.3-3xF3x (x = 0.02, 0.04, 0.06, 0.08, 和 0.1) 系列。通过粉末X射线衍射(XRD)图谱验证了掺杂浓度对LPSC结构的影响。不同比例掺杂的Li5.7+2xP1-xInxS4.7Cl1.3-3xF3x电解质均展示出类似的立方锂-硫银锗矿型晶体结构(Li7PS6,PDF#34-0688),与参考的Li7PS6 (PDF#34-0688) 非常吻合。在晶体结构中,较小离子半径F−(136 pm)对Cl−(181 pm)的取代将缩小电解质的晶胞体积,而较大的In3+(81 pm)对P5+(38 pm)的取代会抵消晶格体积的收缩,晶胞体积的变化是掺杂元素相互竞争的结果。随着InF3掺杂量的增加,衍射峰持续向较低的衍射角移动,表明晶胞体积存在明显的扩展现象。如图S1所示,补充信息中,Li5.7+2xP1-xInxS4.7Cl1.3-3xF3x的晶格参数从x = 0时的9.825 Å稳步增加到x = 0.1时的9.856 Å,表明In3+掺杂在晶体晶格中起的作用比F-掺杂更为显著。然而,由于In和F掺杂引起的溶解度限制,随着掺杂量的增加(超过8%),包括LiCl、LiInS4、Li8P2S9、LiF等多种晶相逐渐出现。从热力学的角度来看,使用DFT计算研究了在晶体结构不同位置掺杂In和F的可能性。补充信息图S3展示了LPSC结构优化的不同掺杂模型。结果表明,掺杂的In原子倾向于占据P原子(4b位点),因为其掺杂稳定性更高。进一步,在优化的In掺杂LPSC结构中,F原子占据Cl 4a位点和Cl 4d位点的Ef分别为0.81和0.64 eV(补充信息图S4b)。然而,F取代PS4基团和InS4基团中S位点所需的能量分别为-1.56和-1.24 eV。因此引入F元素最有利于取代Cl 4a位点。Li5.7+2xP1-xInxS4.7Cl1.3-3xF3x电解质颗粒SEM和EDS图谱表明,球磨后的电解质颗粒大小约为3-5 μm。XPS和EDS图谱进一步证实了In和F元素成功掺杂进锂硫化物固体电解质的晶体结构中。

为了评估枝晶抑制能力,本文构建了对称的Li/Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x/Li电池,并进行了以0.1 mA cm−2的电流密度递增的恒电流循环测试。CCD代表了ASSLBs能够承受的最大电流密度,而不会因为枝晶生长导致电池失效,它决定了锂金属电池的功率密度。如图3a所示,原始LPSC的CCD值为1.0 mA cm−2,这与文献中先前报道的值相当。相比之下,随着In和F浓度的增加,Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x的CCD值也随之增加,当x等于0.06时(LPSCInF,图3b),达到最大值2.5 mA cm−2。Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x(x = 0.02, 0.04, 0.08, 0.1, 和 0.15)的电压-时间曲线如图S10所示,附录信息中,所有不同掺杂量的硫化物SEs的CCD值都比原始LPSC高。值得注意的是,Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x SEs的CCD值与电子导电性呈现相反的趋势(图S11,附录信息)。

本文通过组装锂对称电池进一步评估了Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x固体电解质(SEs)的长期锂镀层/剥离循环性能。如图S12所示,在支持信息中,Li/LPSC/Li对称电池在电流密度为0.5 mA cm−2和截止容量为0.5 mAh cm−2的条件下循环75小时后,显示出不可逆的电压下降,表明电池短路。与此形成鲜明对比的是,Li/Li5.7+2xP1−xInxS4.7Cl1.3−3xF3x (x = 0.02)/Li对称电池在超过750小时的时间里没有短路迹象(图S13)。然而,在锂镀层/剥离过程中形成的界面相会导致极化电压从23 mV逐渐增加到101 mV。在相同条件下,Li/LPSCInF (x = 0.06)/Li对称电池可以在22 mV的平坦过电位下稳定运行超过2000小时,这展示了其抑制锂枝晶生长的最佳能力(图3d)。更值得注意的是,即使在高电流密度1 mA cm−2和截止容量1 mAh cm−2的条件下,Li/LPSCInF/Li对称电池也能稳定运行超过1000小时(图S14)。考虑到锂金属的电化学稳定性,通过In和F的共取代制备的硫化物SEs与报道中的最佳性能相当(图3c;S2)。

为了理解LPSCInF抑制锂枝晶生长的机制,进行了时间分辨的电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和密度泛函理论(DFT)计算。时间分辨的EIS测量也用于评估SEs与锂金属的界面稳定性(图S15)。在最初的24小时内,Li/LPSCInF/Li电池的界面阻抗持续增加,并在循环72小时后稳定在约175 Ω,表明形成了界面相。相比之下,在48小时的储存后,Li/LPSC/Li电池的阻抗从163 Ω继续增长到312 Ω,表明LPSC/Li界面持续发生副反应。进一步,通过SEM测量来识别在0.5 mA cm−2/0.5 mAh cm−2条件下对称电池中锂金属的原始形态和循环50小时后的锂金属形态。在图S16b中,支持信息中,Li/LPSCInF/Li对称电池上没有形成可见的锂枝晶或裂纹,表明在Li/SEs界面上的锂镀层/剥离均匀。与此形成鲜明对比的是,由于界面接触不均匀和Li+的不均匀沉积,可以在LPSC循环后的锂金属表面观察到绒毛状的锂枝晶(图S16c)。

在LPSCInF表面收集的XPS光谱是在与锂金属循环50小时后获得的。Li 1s、P 2p、S 2p、Cl 2p、In 3d和F 1s光谱的总体结果在图3e,f和图S17中展示;支持信息中。如图4e所示,通过F 1s光谱中684.8 eV处观察到的特征峰验证了LiF的存在。Li 1s光谱中54.9 eV处的显著信号也表明形成了LiF(图S17a)。在支持信息中的图S17b,c中,LPSCInF在与锂金属接触时分解成Li2S和Li3P。LiCl、Li2S、Li3P和LiF的PDOS图在支持信息中的图S18中展示。在各种SEI成分中,LiF因其7.4 eV的宽带隙而被认定为电子绝缘体。这些具有大带隙的副产品(Li2S、LiF和LiCl)有效地阻断了电子路径并防止进一步分解,类似于传统锂离子电池中的固态电解质界面(SEI)。

在表面,经过50小时的循环后,可以检测到In3+、In0(450.7和443.0 eV)和Li-In合金(448.1和441.3 eV)三种化学状态(图3f)。Li-In合金相的体积化学扩散系数(D)约为10−8到10−6 cm2 s−1,这远高于块状锂金属中的锂(5.69 × 10−11 cm2 s−1)。在LPSCInF/Li界面生成的亲锂性Li-In合金有助于促进快速的传输动力学并调节锂的均匀成核。根据以往的研究,Li (100)表面是最稳定的,因此用于后续的计算。我们计算了Li-In合金的表面能,Li-In合金(100)、(110)和(111)表面的表面能分别为0.50、0.40和0.51 eV Å−2(图S19a)。因此,Li-In合金(110)表面是最稳定的表面,被选用于锂扩散计算。图3g,h显示了Li (100)表面和Li-In合金(110)表面的锂扩散势垒。计算的详细信息在支持信息的实验部分给出。Li-In合金中锂原子的迁移势垒沿(110)方向为0.17 eV,低于纯锂金属(100)表面的0.38 eV势垒。在支持信息的图S19b中,Li-In合金(100)的迁移势垒为0.23 eV,这略高于(110)方向。Li-In合金相较低的扩散能量势垒有利于SEI层上Li+的扩散,进一步有助于锂离子通量的均匀化。原位形成的电子阻挡LiF可以钝化硫化物SEs与锂金属之间的电子传输。总体而言,使用In和F共掺杂策略制备的硫化物电解质对于实现锂金属阳极到高能量密度ASSLBs(图3h)显示出巨大的潜力。

本文制备了由LPSCInF和PIB粘结剂构成的硫化物SE膜。PIB粘结剂的分子结构由具有小侧链的饱和碳氢化合物组成,分子链之间存在较强的分子间吸引力,增强了分子之间的黏附力。

为了验证LPSCInF-FIB复合固体电解质膜的电化学稳定性,使用LiCoO2(LCO)作为正极材料、Li金属为负极及LPSCInF-FIB电解质膜组装了全固态电池。组装的全固态电池首圈放电比容量为135.7 mAh g−1,初始库仑效率为86.2%,经过500圈循环后容量保持率仍然高达83.2%。

FeS2由于其超高的理论比容量894 mAh g−1、地球丰度和环境友好性,被选为构建高能量密度全固态锂硫电池(ASSLBs)的阴极活性材料。在图S33中,FeS2展示出单晶微结构,颗粒大小约为10微米。组装的ASSLBs在1.0-3.0 V(相对于Li+/Li)的电压范围内进行测试,电流为0.1 C和60 C。如图6a所示,在第一个循环中,以FeS2为阴极的ASSLBs提供了834.1 mAh g−1的放电比容量和96.9%的首次库仑效率(ICE),活性材料负载为5.0 mg cm−2,这接近FeS2的理论比容量。在第二个放电曲线中,基于FeS2的ASSLBs显示出两个明显的平台,分别位于2.2 V和1.5 V,对应于中间形成的反应:FeS2 + 2Li+ + 2e− = FeS + Li2S,以及FeS + 2Li+ + 2e− = Fe0 + Li2S。然而,在50个循环后,放电电压平台向更高的电压平台移动,可能是由于金属铁单体的形成增加了复合正极的电子导电性。图6b展示了FeS2/LPSCInF膜/Li电池在活性材料负载为1.27 mg cm−2时的倍率性能。通过逐渐将电流率从0.1增加到0.2、0.3和0.5 C,电池显示出高比放电容量分别为819.7、785.2、779.7和763.0 mAh g−1。不同电流率下的相应电压曲线如图6c所示。在0.5 C的高电流率下,与0.1 C相比,高容量保持率为93.1%,表明构建的ASSLBs具有优异的动力学性能。此外,图6d展示了电池在0.1 C和60 C下的长期循环性能,经过100个循环后,放电容量保持率为91.3%。电池的相应电化学阻抗谱(EIS)结果如图S34所示,其中电池在2个循环和100个循环时的阻抗分别为92.9 Ω和216.6Ω。这些结果表明,制备的LPSCInF SE膜具有优异的电化学稳定性,能够与高体积变形的硫基活性材料兼容。基于电池参数(表S3,支持信息),采用LPSCInF膜的FeS2基ASSLBs显示出高达410 Wh kg−1的高总质量能量密度,这在其他已报道的结果中处于高水平(图6e;表S4)。

总结与展望
该研究成功制备了一系列掺杂了铟(In)和氟(F)的Li5.7+2xP1-xInxS4.7Cl1.3-3xF3x硫化物固态电解质(SEs),其离子导电性得到提高,对锂金属的电化学稳定性极佳。在硫化物基质中的最佳掺杂含量(x = 0.02)表现出最高的离子导电性,达到25°C时5.6毫西门子每厘米(mS cm−1)。在Li5.7PS4.7Cl1.3中,适度的铟和氟浓度(Li5.82P0.94In0.06S4.7Cl1.12F0.18,x = 0.06)使得锂对称电池在25°C时实现了超高的CCD值2.5毫安每平方厘米(mA cm−2)。即使在电流密度为1毫安每平方厘米和容量为1毫安时每平方厘米的情况下,锂/LPSCInF/锂对称电池仍然可以稳定循环超过1000小时。通过浆料涂布和热压工艺制备了一种由掺杂硫化物SEs和PIB粘合剂组成的柔性硫化物复合薄膜(35微米)。组装的LiCoO2/LPSCInF薄膜/Li电池在0.1 C下循环500次后,循环寿命长,为83.2%,并且具有优异的倍率性能。与FeS2阴极、锂金属阳极和薄SEs薄膜组装的ASSLBs实现了410瓦时每千克(Wh kg−1)的能量密度和良好的循环性能(100个循环后>3.8毫安时每平方厘米)。这些结果展示了高性能硫化物SEs在制备用于快速充电和高能量密度ASSLBs的超薄硫化物SE薄膜中的重要性。

文献链接
Dabing Li, Xinyu Liu, Yang Li, Xiaoxue Zhao, Meng Wu, Xiang Qi, Lei Gao, Li-Zhen Fan

AEM First published: 10 October 2024

原文链接:https://doi.org/10.1002/aenm.202402929

锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 122浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦