▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!
每个开关电源都是一个宽带噪声源。因此,将汽车电路板网络中的DC/DC 变换器集成到汽车控制单元中,同时仍然满足汽车原始设备制造商(OEM) 的 EMC 要求,是一项很艰巨的任务。
通常,来自 DC/DC 变换器和其他高速电路的噪声会通过所连接的电缆辐射,这些电缆为噪声提供了有效的天线路径。为了阻断这种潜在的辐射路径,需要在每个电缆连接点都设置滤波器电路。但是,只有当噪声源的 H场或 E 场没有耦合到滤波器组件或电缆中时,滤波才会有效。
在近场环境中,场强的下降与距离平方的倒数 (1/d2) 成正比。因此,噪声源、滤波器组件和连接器之间需要保持一定的最小距离。
但实际上,PCB 尺寸和电缆连接器的位置通常取决于机械空间的大小。而且,在 PCB 的某些区域,元件的最大高度可能非常有限,或者也有可能无法进行双面组装。这些硬件条件的限制要求设计人员在决定元件位置和 PCB 布局时要非常谨慎,尤其是在汽车制造等高度监管的行业中。
布局规划
为避免DC/DC 变换器的电场和磁场被直接耦合到连接器和电缆中,电路必须尽可能远离 PCB 连接点(见图 1)。
图1: 噪声源应尽量远离连接器和电缆
只有距离或额外的屏蔽才能将 EMC 滤波器、连接器和电缆的场强降低到必要的水平,而屏蔽可以代替距离。
最好的方法是采用至少4层、双面组装的 PCB,并将DC/DC 电路和滤波器组件放在电路板相对的两侧。而且,至少有一个内部板层为完整的接地层,以最大可能地减少从噪声源到滤波器电路的交叉耦合。
如果因为系统限制,DC/DC 电路必须靠近连接器,则必须在设计初期即考虑有效的屏蔽。散热器有时也可以用来屏蔽。理想情况下,电感、内置功率 MOSFET 的 DC/DC IC 及其去耦电容都应被屏蔽。
PCB布局指南
在降压变换器中,主要的场源包括:
- 由两个电源开关和 CIN形成的高 di/dt 环路(热环路),它辐射出宽带磁场
- 功率 FET 和电感之间的开关节点,具有强电场辐射
- 辐射电场和磁场的电感
交流磁场可以被能够感应涡流的固体金属区域屏蔽。而铜因其高导电性即为非常有效的屏蔽材质。在PCB 上,返回固定电位的电位差路径中的任何导体都可以有效屏蔽电场辐射。
任何高 di/dt 环路都会辐射出与环路面积和电流幅度成比例的磁场。将输入电容放置在靠近两个电源开关的位置,并采用低阻抗连接,可以最大限度地减小天线环路面积。
为进一步减少该环路产生的磁场,可以在电源开关处对称放置两组电容。理想情况下,这样可以将两个环路中的峰值电流降低一半,从而将 H 场降低 6dB。如果两个环路的方向相反,更将进一步降低辐射的H磁场。(1)
在DC/DC电路的下一层、间距小于100µm的位置应布置完整的GND区域。在这个铺铜区域中,流经电路元件和 PCB 迹线的高 di/dt 电流会产生涡流。涡流与元件侧的原始电流方向相反,两个磁场将相互抵消。如果涡流能够在最短距离内对元件侧的高 di/dt 环路电流进行镜像,则效果最佳。
在超导、零距离和两个环路形状完全匹配的理想情况下,PCB 元件侧的 H 场辐射将被涡流的 H 场完全抵消。
由于DC/DC 电路下方的 GND 铺铜区域有阻抗,因此高 di/dt 涡流会产生电势差,并让该区域产生噪声。这个高噪声的 GND 区域必须与系统 GND 区域分开,尤其要与滤波器和连接器的任何 GND 参考区域隔离。在多层 PCB 中,可以分别布局各层,并通过层间的通孔阻抗来实现隔离。
多层 PCB 的三维视图可以说明这一概念(见图 2)。
图2: 三维PCB视图 - 布局也是电路的一部分
在顶层,输入电容(CIN)和两个功率 FET 连接至 VIN区域和 PGND 区域(如上图中的红色部分),它们通过通孔连接到内层。在 VIN路径上,通孔之后必须连接电感元件(例如 1µH 至 2µH的线圈)。这样,来自开关转换的高 di/dt 电流将被限制在 CIN中,不会在PCB上流动。
PGND 区域不应直接连接到元件侧的任何其他 GND,只通过通孔连接到 DC/DC 模块下的 PGND 区域(如上图中的蓝色部分)。其目的是将高频电流限制在元件侧,将噪声与“外界”隔离开来。PCB中至少要设计一层完整的GND,以提供低阻抗的系统参考。请记住,布局也是电路的一部分。
电感下方要铺铜吗?
有些 PCB 布局工具预设不允许在电感芯下铺铜。对于这个问题,各方观点不一,有人认为根本无需铺铜,有人则认为应该直接在PCB 元件侧线圈正下方铺铜。
结 语
参考文献
· END ·