一文了解晶体管发展历程

BOE知识酷 2024-11-26 17:45


知识酷Pro 👆
学显示行业知识
找小酷!

第1771篇推文


20世纪最伟大的发明是什么,你可能会得到一个答案——晶体管。

这篇文章带大家重走晶体管从发明、从20000nm制程到1nm制程、点燃科技革命的长征路。

桔猫的scaling down

此处需要注意的是,广义上的晶体管种类挺多,此处我们着重讲讲,用于大规模集成电路中的晶体管。同时,这篇文章既讲故事,也讲原理,如果原理看不懂可以跳过当故事看。

上面这张图标出来了晶体管发展的历史。如果你不是专业选手,现在看不懂没关系,等你读完这篇文章,再回过来看。

一定看的懂这每一步的意义。当然,如果你对晶体管比较熟悉,通过这张图你应该就比较明白我打算在这篇文章里讲点什么。


1. 横空出世:MOSFET的诞生

1.1 故事

我们的故事,还是要从Wiliam Shockley讲起,看过我芯片简史的小伙伴应该记得,这哥们,靠着徒子徒孙(仙童,intel, etc)曾经占据半导体行业半壁江山。

Wiliam Shockley,晶体管的起点

1936年,年轻的肖克利拿到了博士学位,找了个贝尔实验室的工作养家糊口。其实晶体管的想法他早就有,提出了场效应理论。然后他并没有深入下去,我们按下不表。

二十多年后的60年,科恩(Dawon.Kahng)和马丁.阿塔拉(M.M.Atalla)根据shockley的理论搞出来了东西叫做绝缘栅场效应晶体管(Field Effect Transistor,FET)。

他两发现,在由金属(Metal栅)、氧化物(Oxide绝缘)和硅(Silicon半导体)组成的三明治中,在硅和其氧化物之间的界面处,电特性可以改变,因此将其命名为MOSFET,也就是今天我们常说的MOS,记住它的大名:金属氧化物硅基场效应晶体管。。

可惜的是,这个时候的MOS速度贼慢,通道长20微米(20000nm),比当时较火的双极型晶体管慢100倍。。。所以并没有很受重视。贝尔实验室申请了个专利(US 3102230)后就搁哪儿。。

时间来到了1962年,仙童半导体来了一个叫Frank Wanlass的哥们,对MOS晶体管非常痴迷。63年后他在ISSSCC上发文章,在同一集成电路上放上PMOS和NMOS, 这就是我们说的CMOS。。。

由于自己感觉在仙童不太受重视,他跳槽到了GME(通用微电子公司), 并在64年造出了第一个CMOS IC的demo, 一个20位的移位寄存器。然后这哥们拿着这个demo 芯片到处炫,最后被NASA看上了。NASA看上它的原因主要是:CMOS表现出的的功耗。在CMOS之前大家普遍使用NMOS器件,NMOS工艺简单,但有个问题,电路不动的时候也有静态功耗。

后来的后来,GME因为没钱倒闭了。Frank是个狂热的MOS爱好者以及传道者,intel创立以后moore试图挖来frank, 由于frank有其他公司的合同在身,人没挖成功,但是frank详细的介绍了MOS的工作,玩了一把生在曹营,心在汉。

1971年,intel第一个用晶体管造的处理器发表在了当年的ISSCC上。10000nm工艺(滑稽表情)。

后面的故事我们也知道,摩尔提出一个著名的定律:摩尔定律。在1980年左右,随着晶体管数目不断上升, NMOS导致的静态功耗再也没把发接受。intel用CMOS开创了一个半导体的新时代!

1.2 原理P1——半导体及PN结

讲完了故事,我们来讲讲,上面提到的MOSFET到底是一个什么样的工作原理。

MOSFET实际上是个三极管,要讲清楚原理,我们先从半导体PN结原理讲起。首先我们来看如何通过掺杂造出半导体。

我们先从硅的电子结构讲起,硅实际上有14个电子。其中内层电子它比较稳定,最外层4个电子,容易丢失或者获得其他电子,形成共价键,8个电子才是稳定态。一般来讲,我们画的时候只画最外层4个。

本来硅原子堆在一起,会形成如下中间硅原子一样的结果,和周边的硅原子形成共价键,周边恰好8个电子,这个时候Si是不导电的。没有掺杂的Si, 我们叫本征半导体。

那假如,我们在Si里掺杂一点五个电子的Sb, 由于周边都是Si,只需要4个电子,此时Sb还是倾向于形成8电子的稳定结构,此时多出来的一个电子就成了自由电子。同理,掺入3价的B,此时少一个电子,就形成了一个电子空穴。

有了自由电子和空穴,此时的材料就能。。导电了。我们把有空穴的叫positive region, 有电子的叫negative region, 把两种材料怼在一起。如下图所示的一样,电子和空穴会相互扩散然后中和。

相互中和了会发生什么?原来电子和原子核数是相等的。n区电子被空穴中和后,电子少了,形成一个正电区域。同理,p区形成一个负电区域,此时PN节处就有了一个内建电场。这个内建电场阻止了电子继续往p区移动。

此时我们要是在P区和N区加一个大于内建电场Vth的电压,此时外面加的电场足够大,可以克服内建电场的影响,那么自由电子成功被吸引到正极,PN节就导通了。

此时我要要是在PN节加一个反的电场,那么外部电场帮助内建电场进一步阻止自由电子流向P区。导致中间耗尽的区域是越来越大,此时PN节就不导通了。

由此,我们得到了一个可以单向导通的PN结,这个是所有晶体管的基础。

1.3 原理P2——MOSFET工作原理

有了PN节以后,我们继续往下看。此时我们就要介绍我们的晶体管原理了。

下图为p‒n‒p双极型晶体管,具有三段不同掺杂浓度的区域,形成两个p‒n结。浓度最高的p+区称为发射区(emitter,以E表示);中间较窄的n型区域,其杂质浓度中等,称为基区(base,用B表示),基区的宽度需远小于少数载流子的扩散长度;浓度最小的p型区域称为集电区(collector,用C表示)。各区域内的浓度假设均匀分布,p‒n结的概念可直接应用在晶体管内的结上。

下图为p‒n‒p双极型晶体管的透视图,其制造过程是以p型半导体为衬底,利用热扩散的原理在p型衬底上形成一n型区,再在此n型区上以热扩散形成一高浓度的p+型区,接着以金属覆盖p+、n以及下方的p型区形成欧姆接触。 

下面这个图,我们在P衬底上挖出两个n+区域,相当于形成了两个背靠背的PN结。

两个n分别连接源极和漏极。同时中间有个gate端,实际上和下面的衬底中间有绝缘层。这就是我们晶体管的基本原型。

下面我们来讲工作原理。首先我们在G端加一个电压,当这个电压足够大时,大于阈值电压(参考上面的PN节阈值)由于场效应的的存在,吸引足够多的电子,两个n会被连起来,形成一个沟道。

当Vg>Vth, 且Vg-Vd > Vth,此时我们的晶体管处于线性区。沟道和S和D都联通,电流可以在D和S之间流动。

当我们继续加大Vd, S和D之间的电流不断增大。

但Vd足够大后,此时会导致Vd-Vd

最终,SD之间的电流ID,和VD, VG之间的关系如下图。

工作状态就两个区:线性区和饱和区。其中线性区的时候沟道没被夹断,饱和区的时候沟道会被夹断。

所以mosfet通过Vg来控制有没有电流。Vg>Vth有电流,反之没有。

此处留一个小问题供大家思考(实际上是一个常用的面试题),我们常说的数字电路中,晶体管工作在线性区还是饱和区?为什么?

你可能注意到,gate端,第一张图画的是金属铝,后来几张图已经换成了多晶硅Poly。多晶硅替代铝主要是两个原因。

第一,制造MOS的过程中先掺杂制作下层,然后,使用稍后形成铝金属栅极的栅极氧化物区域的栅极掩模。这么搞有一个问题。。有可能对不准,会产生寄生电容。。

当然,这个问题工程师们也想过办法。叫自对准栅极工艺。先造栅极,然后离子注入源漏。栅极下面的氧化物可以阻止源漏渗透到栅极下面。但这么做有个问题,掺杂需要高温退火,温度>8000摄氏度,铝早就融化了。于是换成了多晶硅。虽然多晶硅导电性肯定不如铝,但可以通过掺杂的方式减小电阻。

第二,用铝做栅极,阈值电压比较高。早期晶体管大,阈值电压高,自然没问题,随着晶体管越来越小,铝搞不定低的阈值电压,多晶硅确可以通过掺杂的方式搞定。

至此,Mosfet的原理我们就讲清楚了,我们继续开始讲故事。

2. 逐步发展:平面晶体管一步步缩小的时代

2.1 故事

我们的故事继续从摩尔定律讲起。摩尔搞了个定律,实际上不是定律,就是他的一个判断。集成电路中晶体管数量每两年翻一番。怎么翻一番?如果晶体管大小不变,仅仅把晶体管数量做上去显然不成。你总不能指望拿到手的芯片面积每两年增大一倍?

所以践行moore定律的唯一一条路:缩小晶体管尺寸。

晶体管尺寸不断缩小,好处肯定不少。通道变短,会更容易实现晶体管的通断。毕竟沟道变短了,电流从D到S跑路的距离就会变短。第二点,晶体管变小了,相应的,寄生电容就小了,晶体管能实现更快的切换。

于是,人们把面积减少一半作为目标,栅极长度作为技术节点,(标准定义应该是gate长度,你理解成沟道长度也没什么不妥,反正后面就没意义了)不断演进。180nm, 130nm,90nm、65nm、45nm到28nm,再到14nm、10nm、7nm乃至5nm。

你可能会问,工艺节点是怎么定的?实际上就是一个moore定律倒果为因的结果。因为我们想让面积缩小一半,*0.5, 那么沟道作为长度,是面积的开方,所以沟道长度要缩短为原来的0.7倍(0.7*0.7=0.5)。所以每个工艺节点都是上一个工艺阶段乘以0.7的结果。

当然,以gate长度定义工艺节点早没有意义了。现在这0.7的定义方法更多的是一种历史传承。如上面这张图,在1990年代,gate长度缩短实际上比工艺节点还要快,但后面2004年以后gate长度基本上无法再缩短了。所以实际上你看到的什么14nm, 7nm什么的,本就没有什么实际意义,或者只有等效意义了。

言归正传,既然缩小晶体管这么重要,那就干呗!

在缩小晶体管这条道路上,人类一路披荆斩棘。130nm以上手段比较单一,直接做小就可以,130nm以下,需要有其他技术。在90nm搞出应变硅技术,在65/45nm搞出高K介电质。这个阶段主要是平面晶体管。当然,再往后,肯定还有招,我们后面再讲。

我们可以看到,hi-k材料+metal的组合代替多晶硅后,似乎好造一些。

至此,我们现有的技术可以把晶体管缩小到32nm制程,再往下呢?难搞了。

3. 柳暗花明:SOI与FINFET的相爱相杀

3.1 故事

说SOI和Finfet相爱相杀,实际行也不准确。他两中finfet明显统治力更强。

但这两个给moore定理续命的技术方案,实际上是同一个人提出来的。

这又是一个传奇的名字——胡正明。


美国有个牛逼的存在——DARPA, 美国国防高级研究计划局。会经常掏钱,给美国规划科技的路子。

DARPA早在1995年就很敏锐的觉得,晶体管发展到25nm以下可能有问题,所以提出一个计划交“25nm计划”,要钱给钱,要人给人,等着有牛人来揭榜。

而胡正明正好做了好多关于晶体管的理论研究,是这方面的专家。但实际上由于信息差,DARPA这消息到他耳朵里的时候还剩1周时间deadline, 不过好在艺高人胆大,用一周时间画了个草图交给了DARPA。DARPA还就真给钱了。直接给了4年研究经费。

实际上类似于FinFET概念以前就有人提过,只是大家觉得做不出来。胡正明带着他的学生们真的做出来了这个器件。

2000年,DARPA资助结束,该掏出成果了。胡正明把自己的两个方案都发了文章,立刻引起了轰动。但实际上并没有被工业界立即用起来。为什么呢?

因为DARPA眼光实在是太超前。。。这个时候工业界还在玩150nm的工艺。根本不需要这种25nm的玩意儿。

等到10年后,FinFET在28nm开创了一个时代。同时,胡正明提出的另一个方案SOI也大放光彩。

总之,FinFET和SOI两种全新的晶体管,让工艺制程直接苟到了5nm, 甚至台积电的3nm也还在用FinFET。需要注意的是这两个方向不是一个淘汰另一个的关系,目前两种方案都还在用。

另外,看到这个地方的人应该不多,所以我偷偷插句题外话,大家总关心国产芯片,国产芯片能造到什么制程?目前看起来应该会卡在5nm, 而且5nm的良率在一段时间内还提不上去。主要原因我在原理部分讲。

实际上,继续把晶体管造小的思路是非常明确的—— 增强栅极对沟道的控制能力,克服短沟道效应。

那么思路也有两个:第一个方向,我们想办法把沟道做的薄,这样好控制。第二个方向,我们想办法把栅极控制面积做大,增强对沟道的控制力。

这两个方向就产生了28nm以下的两种著名的晶体管技术。第一个方向叫全耗尽型绝缘体上硅 (FDSOI, Fully Depleted Silicon-on-insulator)。第二个方向叫FinFET。

3.2 原理P6——SOI技术

我们先来讲第一个方案。SOI。这个方案原理比较好懂。先来个SOI的3D结构图。

看上面这张图,左侧是原始的MOSFET。右侧是新的SOI结果。左侧gate对沟道控制力弱很大的一个方面是漏电流会从沟道下面漏过去,我们直接在下面搞一层绝缘体,杜绝这一部分漏电流,我们就可以把沟道做的更短。主要原理是源级和漏级除了沟道,不再有半导体连接了。

所以称之为绝缘体上硅。这种搞法的好处之一是制造简单,工艺和原来的平面晶体管似乎也没有太大区别。SOI的劣势在哪儿呢?到底还是平面的,晶体管继续缩小就有点乏力。

3.3 原理P7—— FINFET晶体管结构

我们再来讲第二个方向,FinFET。

FinFET的思路比较简单。我们把沟道揪起来,让栅极三面包围住沟道,这样栅极对沟道的控制能力自然就加强了。

如上图,直观上讲,左侧是原始的MOSFET, 右侧是新的FinFET。沟道从三面被栅包围,栅的控制力显然会比左侧栅放在沟道上面对沟道控制力强。

如果上面那个图你还理解,我们用下面这个图再讲讲。我在图上画出了沟道的方向。左侧这个沟道只有一个鳍,实际上我们为了进一步增强栅极对沟道的控制力,把沟道揪起三个鳍,进一步增加栅和沟道接触的表面积。

电子显微镜照出来是这样的。

看看实验结果,FinFET在漏电流和速度上均比原来的平面晶体管好。

3.4 原理P8—— 用DUV造FINFET引入的多重曝光

恩,然后填个坑,为什么说我国自主生产的芯片容易停在5nm,且良率提升比较难。

主要原因是我们搞不来EUV,只能DUV。光刻精度实际上有个著名的公式:𝑃𝑖𝑡𝑐=2𝑘/𝜆𝑛𝑠𝑖𝑛𝜃

其中,分母取决与透镜,我们先不谈。λ是波长,n是光浸润的折射率。我们只有DUV, 没有EUV,λ天然劣势。

只能减少k。目前采用的方式是多重曝光。

原理很简单,如上图,既然一层曝光搞不定精度了,那我们多做一张掩膜,分多次来光刻芯片。实际上多次曝光对齐是非常困难的事儿。一方面,生产时间变大一倍,一旦对不准,还非常容易影响良率。毕竟,上面讲了是两层光刻。实际以上要高出5nm来,需要的曝光层数可能有七八层。。

所以如果没有EUV, 目前大家普遍觉得,在成本可接受的前提下,5nm应该DUV就到头了。当然,如果不计代价,可能还能往下做,不过商业价值可能就基本没有了。

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
来源:知乎
作者:桔里猫
链接:https://zhuanlan.zhihu.com/p/1688492575


(END)


文章来源:半导体全解公众号












































BOE知识酷 欢迎加入知识酷Pro,分享显示行业知识、最新黑科技、办公软件技巧等。
评论
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 84浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 53浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 147浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 61浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 58浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 68浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 116浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦