一个TCP发送缓冲区问题的解析

C语言与CPP编程 2024-11-26 09:02

击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号

干货福利,第一时间送达!

最近有小伙伴说没有收到当天的文章推送,这是因为微信更改了推送机制,导致没有星标公众号的小伙伴刷不到当天推送的文章,无法接收到一些比较实用的知识和资讯。所以建议大家加个星标⭐️,以后就能第一时间收到推送了。

原文:https://segmentfault.com/a/1190000021488755

最近遇到一个问题,简化模型如下:

Client 创建一个 TCP 的 socket,并通过 SO_SNDBUF 选项设置它的发送缓冲区大小为 4096 字节,连接到 Server 后,每 1 秒发送一个 TCP 数据段长度为 1024 的报文。Server 端不调用 recv()。预期的结果分为以下几个阶段:

Phase 1 Server 端的 socket 接收缓冲区未满,所以尽管 Server 不会 recv(),但依然能对 Client 发出的报文回复 ACK;

Phase 2 Server 端的 socket 接收缓冲区被填满了,向 Client 端通告零窗口(Zero Window)。Client 端待发送的数据开始累积在 socket 的发送缓冲区;

Phase 3 Client 端的 socket 的发送缓冲区满了,用户进程阻塞在 send() 上。

实际执行时,表现出来的现象也"基本"符合预期。

不过当我们在 Client 端通过 ss -nt 不时监控 TCP 连接的发送队列长度时,发现这个值竟然从 0 最终增长到 14480,它轻松地超了之前设置的 SO_SNDBUF 值(4096)

# ss -nt
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.183.130:52454 192.168.183.130:14465
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1024 192.168.183.130:52454 192.168.183.130:14465
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 2048 192.168.183.130:52454 192.168.183.130:14465
......
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 13312 192.168.183.130:52454 192.168.183.130:14465
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 14336 192.168.183.130:52454 192.168.183.130:14465
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 14480 192.168.183.130:52454 192.168.183.130:14465

有必要解释一下这里的 Send-Q 的含义。我们知道,TCP 是的发送过程是受到滑动窗口限制。

这里的 Send-Q 就是发送端滑动窗口的左边沿到所有未发送的报文的总长度。

那么为什么这个值超过了 SO_SNDBUF 呢?

双倍 SO_SNDBUF

当用户通过 SO_SNDBUF 选项设置套接字发送缓冲区时,内核将其记录在 sk->sk_sndbuf 中。

@sock.c: sock_setsockopt
{
case SO_SNDBUF:
.....
sk->sk_sndbuf = mat_x(u32, val * 2, SOCK_MIN_SNDBUF)
}

注意,内核在这里玩了一个小 trick,它在 sk->sk_sndbuf 记录的的不是用户设置的 val, 而是 val 的两倍

也就是说,当 Client 设置 4096 时,内核记录的是 8192 !

那么,为什么内核需要这么做呢?我认为是因为内核用 sk_buff 保存用户数据有额外的开销,比如 sk_buff 结构本身、以及 skb_shared_info 结构,还有 L2、L3、L4 层的首部大小.这些额外开销自然会占据发送方的内存缓冲区,但却不应该是用户需要 care 的,所以内核在这里将这个值翻个倍,保证即使有一半的内存用来存放额外开销,也能保证用户的数据有足够内存存放。

但是,问题现象还不能解释,因为即使是 8192 字节的发送缓冲区内存全部用来存放用户数据(额外开销为 0,当然这是不可能的),也达不到 Send-Q 最后达到的 14480 。

sk_wmem_queued

既然设置了 sk->sk_sndbuf, 那么内核就会在发包时检查当前的发送缓冲区已使用内存值是否超过了这个限制,前者使用 sk->wmem_queued 保存。

需要注意的是,sk->wmem_queued = 待发送数据占用的内存 + 额外开销占用的内存,所以它应该大于 Send-Q

@sock.h 
bool sk_stream_memory_free(const struct sock* sk)
{
if (sk->sk_wmem_queued >= sk->sk_sndbuf) // 如果当前 sk_wmem_queued 超过 sk_sndbuf,则返回 false,表示内存不够了
return false;
.....
}

sk->wmem_queued 是不断变化的,对 TCP socket 来说,当内核将 skb 塞入发送队列后,这个值增加 skb->truesize (truesize 正如其名,是指包含了额外开销后的报文总大小);而当该报文被 ACK 后,这个值减小 skb->truesize。

tcp_sendmsg

以上都是铺垫,让我们来看看 tcp_sendmsg 是怎么做的。总的来说内核会根据发送队列(write queue)是否有待发送的报文,决定是 创建新的 sk_buff,或是将用户数据追加(append)到 write queue 的最后一个 sk_buff

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
mss_now = tcp_send_mss(sk, &size_goal, flags);

// code committed
while (msg_data_left(msg)) {
int copy = 0;
int max = size_goal;

skb = tcp_write_queue_tail(sk);
if (tcp_send_head(sk)) {
......
copy = max - skb->len;
}

if (copy <= 0) {
/* case 1:alloc new skb */
new_segment:
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf; // 如果发送缓冲区满了 就阻塞进程 然后睡眠

skb = sk_stream_alloc_skb(sk,
select_size(sk, sg),
sk->sk_allocation,
skb_queue_empty(&sk->sk_write_queue));
}
......
/* case 2:copy msg to last skb */
......
}

Case 1.创建新的 sk_buff

在我们这个问题中,Client 在 Phase 1 是不会累积 sk_buff 的。也就是说,这时每个用户发送的报文都会通过 sk_stream_alloc_skb 创建新的 sk_buff。

在这之前,内核会检查发送缓冲区内存是否已经超过限制,而在Phase 1 ,内核也能通过这个检查。

static inline bool sk_stream_memory_free(const struct sock* sk)
{
if (sk-?sk_wmem_queued >= sk->sk_sndbuf)
return false;
......
}

Case 2.将用户数据追加到最后一个 sk_buff

而在进入 Phase 2 后,Client 的发送缓冲区已经有了累积的 sk_buff,这时,内核就会尝试将用户数据(msg中的内容)追加到 write queue 的最后一个 sk_buff。

需要注意的是,这种搭便车的数据也是有大小限制的,它用 copy 表示

@tcp_sendmsg

int max = size_goal;

copy = max - skb->len;

这里的 size_goal 表示该 sk_buff 最多能容纳的用户数据,减去已经使用的 skb->len, 剩下的就是还可以追加的数据长度。

那么 size_goal 是如何计算的呢?

tcp_sendmsg
|-- tcp_send_mss
|-- tcp_xmit_size_goal

static unsigned int tcp_xmit_size_goal(struct sock* sk, u32 mss_now, int large_allowed)
{
if (!large_allowed || !sk_can_gso(sk))
return mss_now;
.....
size_goal = tp->gso_segs * mss_now;
.....
return max(size_goal, mss_now);
}

继续追踪下去,可以看到,size_goal 跟使用的网卡是否使能了 GSO 功能有关。

  • GSO Enable:size_goal = tp->gso_segs * mss_now
  • GSO Disable: size_goal = mss_now

在我的实验环境中,TCP 连接的有效 mss_now 是 1448 字节,用 systemtap 加了探测点后,发现 size_goal 为 14480 字节!是 mss_now 的整整 10 倍

所以当 Clinet 进入 Phase 2 时,tcp_sendmsg 计算出 copy = 14480 - 1024 = 13456 字节。

可是最后一个 sk_buff 真的能装这么多吗?

在实验环境中,Phase 1 阶段创建的 sk_buff ,其 skb->len = 1024, skb->truesize = 4372 (4096 + 256,这个值的详细来源请看 sk_stream_alloc_skb)

这样看上去,这个 sk_buff 也容纳不下 14480 啊。

再继续看内核的实现,再 skb_copy_to_page_nocache() 拷贝之前,会进行 sk_wmem_schedule()

tcp_sendmsg
{
/* case 2:copy msg to last skb */
......
if (!sk_wmem_schedule(sk, copy))
goto wait_for_memory;

err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
pfrag->page,
pfrag->offset,
copy);
}

而在 sk_wmem_schedule 内部,会进行 sk_buff 的扩容(增大可以存放的用户数据长度).

tcp_sendmsg
|--sk_wmem_schedule
|-- __sk_mem_schedule
__sk_mem_schedule(struct sock* sk, int size, int kind)
{
sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
allocated = sk_memory_allocated_add(sk, amt, &parent_status);
......
// 后面有一堆检查,比如如果系统内存足够,就不去看他是否超过 sk_sndbuf
}

通过这种方式,内核可以让 sk->wmem_queued 在超过 sk->sndbuf 的限制。

我并不觉得这样是优雅而合理的行为,因为它让用户设置的 SO_SNDBUF 形同虚设!那么我可以增么修改呢?

  • 关掉网卡 GSO 特性
  • 修改内核代码, 将检查发送缓冲区限制移动到 while 循环的开头。

while (msg_data_left(msg)) {
int copy = 0;
int max = size_goal;

+ if (!sk_stream_memory_free(sk))
+ goto wait_for_sndbuf;

skb = tcp_write_queue_tail(sk);
if (tcp_send_head(sk)) {
if (skb->ip_summed == CHECKSUM_NONE)
max = mss_now;
copy = max - skb->len;
}

if (copy <= 0) {
new_segment:
/* Allocate new segment. If the interface is SG,
* allocate skb fitting to single page.
*/
- if (!sk_stream_memory_free(sk))

- goto wait_for_sndbuf;
EOF

你好,我是飞宇。日常分享C/C++、计算机学习经验、工作体会,欢迎点击此处查看我以前的学习笔记&经验&分享的资源。

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会

加个微信,打开另一扇窗

经常遇到有读者后台私信想要一些编程学习资源,这里分享 1T 的编程电子书、C/C++开发手册、Github上182K+的架构路线图、LeetCode算法刷题笔记等精品学习资料,点击下方公众号会回复"编程"即可免费领取~

感谢你的分享,点赞,在看三  



C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 66浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 150浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 147浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 58浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 48浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 53浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 54浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 154浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 80浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 118浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 105浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦