程序员必看:浮点数精度问题全解析

原创 typedef 2024-11-25 08:21

目录

  • 0、导读
  • 1、引言
  • 2、浮点数存储格式
  • 3、转换流程
    • 3.1、将整数部分转换为二进制
    • 3.2、将小数部分转为二进制
    • 3.3、规范化
    • 3.4、调整阶码
    • 3.5、尾数舍入
    • 3.6、组三元素
  • 4、单/双精度浮点数比较
    • 4.1、存储格式
    • 4.2、精度
    • 4.3、浮点数范围
    • 4.4、浮点数比较
  • 5、阶码相关问题探索
    • 5.1、什么是移码
    • 5.2、如何计算移码
    • 5.3、为什么要用移码表示
  • 6、指数e
    • 6.1、指数范围
    • 6.2、特殊值
  • 7、文中问题解答
  • 8、参考链接
  • 9、总结

0、导读

这篇文章主要探讨了浮点数在计算机中的表示、存储和精度问题。通过详细的解释和示例,您将了解浮点数误差的根源。文章内容较多,大约3700余字,阅读时间约为10分钟,建议先收藏,待有空时再细细品读。

1、引言

0.1 + 0.2 为什么不等于 0.3 ?

当被问及浮点数为何存在误差时,你将如何回答?

没看完这篇文章之前你可能会回答:"哼,反正我就知道有误差..."

阅读完这篇文章后,你将能够更准确地回答这类问题,让我们开始这段学习之旅吧!

2、浮点数存储格式

浮点型在内存中的存储不是像整形那样直接存储的,而是用一种二进制的科学计数法来表示的,具体的数学表达式为

V = (-1) s × M × 2 e

其中,e = E - 127

在计算机科学领域,IEEE 754 是一种标准,用于定义浮点数的表示方法,浮点型数据的存储格式如下

请务必记住,尾数存储用原码,阶码存储用移码

  • S(符号位):0代表正数,1代表负数。
  • E(阶码):指数字段需要同时表示正指数和负指数。为了得到存储的指数,在实际指数上加一个偏置,其中e=E-127
  • M(尾数):一个规范化尾数就是小数点左边只有一个1,然后是小数点后面的尾数部分。

注意本文后续使用的e表示科学计数法中的指数部分,E表示存储格式中的阶码,默认的对象都指单精度的浮点数。

3、转换流程

接下来我选择了一个恋爱脑的数字,将1314.520转换到32位单精度IEEE 754二进制浮点表示标准。

3.1、将整数部分转换为二进制

将整数部分反复除以2,并记录每次的余数,直到商为0为止。

division = quotient + remainder;
1314 ÷ 2 = 657 + 0;
657  ÷ 2 = 328 + 1;
328  ÷ 2 = 164 + 0;
164  ÷ 2 = 82  + 0;
82   ÷ 2 = 41  + 0;
41   ÷ 2 = 20  + 1;
20   ÷ 2 = 10  + 0;
10   ÷ 2 = 5   + 0;
5    ÷ 2 = 2   + 1;
2    ÷ 2 = 1   + 0;
1    ÷ 2 = 0   + 1;

从上面构造的列表的底部开始取所有余数,即为整数部分的二进制表示。131410=101 0010 00102

3.2、将小数部分转为二进制

将小数部分不断乘以2,并记录每次的整数部分,直到小数部分为0或达到所需的精度为止

#) multiplying = integer + fractional part;
1) 0.52 × 2 = 1 + 0.04;
2) 0.04 × 2 = 0 + 0.08;
3) 0.08 × 2 = 0 + 0.16;
4) 0.16 × 2 = 0 + 0.32;
5) 0.32 × 2 = 0 + 0.64;
6) 0.64 × 2 = 1 + 0.28;
7) 0.28 × 2 = 0 + 0.56;
8) 0.56 × 2 = 1 + 0.12;
9) 0.12 × 2 = 0 + 0.24;
10) 0.24 × 2 = 0 + 0.48;
11) 0.48 × 2 = 0 + 0.96;
12) 0.96 × 2 = 1 + 0.92;
13) 0.92 × 2 = 1 + 0.84;
14) 0.84 × 2 = 1 + 0.68;
15) 0.68 × 2 = 1 + 0.36;
16) 0.36 × 2 = 0 + 0.72;
17) 0.72 × 2 = 1 + 0.44;
18) 0.44 × 2 = 0 + 0.88;
19) 0.88 × 2 = 1 + 0.76;
20) 0.76 × 2 = 1 + 0.52;
21) 0.52 × 2 = 1 + 0.04;
22) 0.04 × 2 = 0 + 0.08;
23) 0.08 × 2 = 0 + 0.16;
24) 0.16 × 2 = 0 + 0.32;

虽然我们没有得到任何等于0的小数部分,但是我们有足够的迭代(超过尾数限制)。

从顶部开始依次取乘法运算的所有整数部分,即为小数部分的二进制:0.5210=0.1000 0101 0001 1110 1011 10002

3.3、规范化

前面得出了整数以及小数部分的二进制表示,合并以后即:

1314.5210= 101 0010 0010.1000 0101 0001 1110 1011 10002

将小数点向左移动 10 位,使其左边只剩下一位非零的数字

1314.5210= 101 0010 0010.1000 0101 0001 1110 1011 10002= 101 0010 0010.1000 0101 0001 1110 1011 10002 ×2 0= 1.0100 1000 1010 0001 0100 0111 1010 1110 002 ×2 10

再回顾一下浮点数的数学表达式 V = (-1) s × M × 2 e 由此可知

s = 0
M = 1.0100 1000 1010 0001 0100 0111 1010 1110 00
e = 10

3.4、调整阶码

根据规范化得知指数 e = 10,又根据公式 e = E - 127 可得知道 E=137,所以八位阶码的二进制表示如下所示:

E = 13710 = 1000 10012

3.5、尾数舍入

由第三步规范化得出的尾数M有34位,但是存储格式中尾数只有23位,下面划线的是多出的部分,所以需要对尾数按照一定的方式进行四舍五入。

M = 1. 0100 1000 1010 0001 0100 011 1 1010 1110 00

一共有四种舍入方式,

  • 向偶数舍入,就近舍入(默认)。
  • 朝0舍入:即朝数轴零点方向舍入,即直接截尾。
  • 朝正无穷舍入:对正数而言,只要多余位不全为0则向最低有效位进1;负数则直接截尾。
  • 朝负无穷舍入:对负数而言,向最低有效位进1;正数若多余位不全部为0则简单截尾。

向偶数舍入,简单理解就要让尾数的最后一位为0,让其保持偶数,能够被2整除。当尾数的最低位为0时,已经是属于偶数了,无需处理。当尾数最低位为1时,需要加1,使其保持偶数。

因为本例计算出尾数的最后一位为1,按照就近舍入(向偶舍入)原则需要加1使其保持偶数。

所以经过调整后的M为

M = 0100 1000 1010 0001 0100 011 + 1
M = 0100 1000 1010 0001 0100 100

3.6、组三元素

根据前面的步骤可以得知

s = 0
E = 1000 1001 2
M = 0100 1000 1010 0001 0100 100 2

1324.5210 = 0-1000 1001-0100 1000 1010 0001 0100 1002

我们去一个转换网站上验证一下转换结果,网站链接放在文章末尾了。

floatConverterIEEE754

可以看到,跟我们转换的结果是相同的,说明网站转换也是选择向偶数舍入的。

4、单/双精度浮点数比较

4.1、存储格式

类型符号位指数长度(Bit)尾数长度(Bit)
float1823
double11152

4.2、精度

浮点数的精度是由尾数的位数来决定的。

对于float型浮点数,尾数部分23位,换算成十进制就是 2^23=8388608,所以十进制精度只有6 ~ 7位;

这里的数字6和7可能会引起疑问,如何理解它们呢?

由于浮点数尾数的舍入问题,最后一位可能存在舍入误差,因此不完全准确。因此,可以准确表示的是后六位,而第七位则可能含有误差。

对于double型浮点数,尾数部分52位,换算成十进制就是 2^52 = 4503599627370496,所以十进制精度只有15 ~ 16位

类型有效位字节数
float6 - 74
double15 - 168

4.3、浮点数范围

类型最小值最大值
float1.175494351 E - 383.402823466 E + 38
double2.2250738585072014 E - 3081.7976931348623158 E + 308

4.4、浮点数比较

浮点数的比较通常用两数之差的绝对值小于一个自定义的数值时,代表两者相等,如下所示:

/**
 *Author:(公众号:typedef)
 */

#define FLOAT_EPSILON (0.000001) //Define your own tolerance
#define FloatIsEqual(a, b) ((fabs((a)-(b)))<(FLOAT_EPSILON))

另外一种方法是将浮点数同时放大一个倍数,然后转成整数之间的比较,比如同时放大10000倍等。

5、阶码相关问题探索

首先阶码E是用移码表示的,那么问题来了,什么叫移码?移码怎么计算?移码的含义是?浮点数为什么要用移码表示?

在解答这些知识点时,我们需要下面两点需要达成一致

  • 阶码使用的是非标准移码
  • 阶码是一个无符号的整数

5.1、什么是移码

移码是补码表示中最高符号位取反的结果。举个例子,上面计算1314.52时,指数是为10的。

+1010 = 0000 10102(真值)

原码:0000 1010
反码:0000 1010
补码:0000 1010
移码:1000 1010

所以10对应标准的移码 1000 1010

5.2、如何计算移码

注意浮点数中移码的计算是非标准的,仅偏移2n-1-1=127。所以移码的计算公式如下所示,其中n为阶码的位数:

E = e + 2 n-1 - 1
E = e + 127

所以10对应的移码为137。

5.3、为什么要用移码表示

它通过将数值加上一个固定的偏移量,使得原本可能是负数的数值变为非负数,从而简化了计算机中有符号数的表示和比较操作。使得计算机能够直接使用整数运算来比较浮点数的大小

6、指数e

6.1、指数范围

浮点数指数部分的实际取值范围是 [-2(e-1)+2, 2(e-1)-1],其中 e 为指数所占位数。32位浮点数,指数占8位,实际取值范围是 [-126, 127]。

-127用作表示0,128 用作表示无穷大和 NaN。NaN 是 "Not a Number" 的缩写,中文意思是“非数字”,通常用于表示一个未定义或不可表示的值。

换言之,8位阶码的表示范围是[0, 255],其中0和255用于表示特殊值。因此,根据公式推导,指数e的实际取值范围是[-126, 127]。

6.2、特殊值

形式指数(e)阶码(E)小数部分
-12700
无穷1282e-1 = 2550
NaN(非数)1282e-1 = 255非0

7、文中问题解答

此时再来回答文中引言提出的问题, 0.1 + 0.2 为什么不等于 0.3 ?

/**
 * Author:(公众号:typedef)
 */

#include 

int main() {
  double a = 0.1 + 0.2;
  printf("%.17f", a);
}

输出为0.30000000000000004,由于在尾数舍入时会带来一定的误差,所以并不完全相等。

当在被问及浮点数为何存在误差时,你将如何回答?欢迎文章留言说出你的看法。

如果不从技术的角度回答这个问题,可以这样回答:整数是离散的,有限的并能够被计算机表示的,小数部分是连续的,包含无穷多的数,数量之多是无法被计算机存储的,只能存储计算机能够表示的最接近这个数值的小数部分,所以可能会不相等。

8、参考链接

  • https://www.cnblogs.com/gyunf/p/12816817.html
  • https://www.h-schmidt.net/FloatConverter/IEEE754.html
  • https://zh.wikipedia.org/wiki/IEEE_754
  • https://docs.pingcode.com/ask/304021.html

9、总结

本篇文章深入分析了浮点数的存储格式到转换流程,再到指数e以及阶码E的探索,大家应该对浮点数有了更全面的理解。

码字不易,如果您觉得有收获,欢迎点赞、转发,加关注!

END

点赞、转发加关注,一键三连,好运年年

关注公众号后台回复数字688或668可获取嵌入式相关资料

往期推荐

C语言编程新手:如何判断结构体(struct)相等?

避免内存陷阱:掌握memcpy和memmove的正确用法

揭秘难以复现Bug的解决之道:堆栈分析实战

加个变量,程序崩了

typedef 主要用于记录个人学习、总结、分享的一个平台。 教学相长,共同进步。同时并建立技术交流群,欢迎加入。期待您的关注。
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦