点击蓝字 关注我们
欢迎来到模拟芯视界
在上期中,我们介绍了控制 PFC 并实现单位功率因数的新方法。
本期,为大家带来的是《ADC 噪声系数如何影响射频接收器设计》,我们将深入探讨如何计算射频采样 ADC 的噪声系数,并说明 ADC 噪声系数对射频信号链设计的影响。
引言
为了制造更小的数字接收器,航天和国防工业采用了现代直接射频 (RF) 采样模数转换器 (ADC)。这些 ADC 消除了射频混合级,并更靠近天线,从而简化了数字接收器设计,同时还节省了成本和印刷电路板 (PCB) 面积。
一个关键(经常被误解的)参数是 ADC 噪声系数,该参数设置用于检测极小信号的射频增益量。本文介绍了如何计算射频采样 ADC 的噪声系数,并说明了 ADC 噪声系数对射频信号链设计的影响。
为什么噪声系数
在数字接收器设计中很重要
数字接收器在两种不同场景下工作,如图 1 所示。在阻断情况下,存在干扰或干扰器,接收器必须以较低的射频增益运行,以免使 ADC 饱和。在此设置中,ADC 被干扰信号驱动至接近满量程;因此,ADC 的大信号信噪比 (SNR) 决定了可检测到的信号微弱程度。还有其他降级机制,例如相位噪声和无杂散动态范围。
在第二种场景中,不存在干扰。检测可能的最弱信号仅取决于接收器的固有本底噪声,这种情况通常以接收器灵敏度进行测量。噪声系数用于测量由接收器信号链中的元件引起的 SNR 降级。
图 1. 阻断或干扰情况与接收器灵敏度场景的比较
ADC 的噪声系数通常是接收器的薄弱环节(约为 25dB 至 30dB),而低噪声放大器 (LNA) 的噪声系数低至 <1dB。不过,可以通过使用 LNA 向模拟射频前端(靠近天线)添加增益来改善 ADC 噪声系数。1dB 接收器系统噪声系数和 2dB 接收器系统噪声系数之间的差异约为 20%。这种差异意味着噪声系数为 1dB 的接收器可以检测振幅大约弱 20% 的信号。在软件定义无线电 (SDR) 中,这意味着无线电输出功率降低,从而延长电池寿命,而在雷达中,这使得覆盖更远的距离成为可能。
SDR 或数字雷达中的现代接收器设计使用直接射频采样 ADC 来减小尺寸、减轻重量并降低功耗。该架构无需射频下变频混频级,从而简化了接收器设计。ADC 噪声系数越好,所需的增益越低,实现的节省越多。此外,使用更少的额外射频增益意味着当存在干扰时,需要降低的增益更小,并在接收器中保持更高的动态范围。
计算系统的噪声系数
您可以使用 Friis 公式来计算接收器系统的噪声系数。假定一个具有两个放大器和一个 ADC 的简化的理想接收器,如图 2 中所示,方程式 1 按如下方式计算级联系统噪声因子:
方程式 1
其中 Fx 是噪声因子,Gx 是功率增益。
以分贝为单位的系统噪声系数为:
方程式 2
图 2. 典型接收信号链
此处需强调两个要点:系统噪声系数主要由第一个元件的噪声系数 F1 决定,前提是增益 G1 和 G2 足够大,以至于 ADC 噪声系数 F3 可以忽略不计。
在具有两个级联 LNA 的系统中比较两个分别具有 20dB 与25dB 噪声系数的不同 ADC,可以看出系统噪声系数有很大差异(请参阅表 1)。
表 1. 具有两个 LNA 级的系统噪声系数
如表 2 所示,将 ADC2 列中列出的系统(噪声系数相差5dB)设置为低于 2dB 的系统噪声系数,将需要使用第三个 LNA(噪声系数 = 3dB)额外增加 10dB 的增益。
表 2 突出了 ADC 噪声系数对整体系统噪声系数的影响。添加第三个 LNA 会增加成本、电路板面积(匹配元件、布线和电源)和系统功耗,并进一步降低满量程余量。
表 2. 使用 ADC2 且具有
三个 LNA 级的系统噪声系数
假设目标接收器灵敏度为 -172dBm,或非常弱的信号仅比绝对本底噪声高 2dB (-174dBm + 2dB = -172dBm),则该接收器需要优于 2dB 的噪声系数。在上面的示例中,我们使用 ADC1(噪声系数为 20dB,如表 1 中所列),级联系统噪声系数为 1.8dB。
如图 3 和表 3 所示,增益为 12dB 的 LNA1 将输入信号和噪声提高 12dB,而将噪声系数降低 1dB(噪声系数 LNA1= 1dB)。LNA2 将信号和噪声提高了 15dB。尽管 LNA2 具有更高的固有噪声图 3dB,但由于 LNA1 的增益为 12dB,其影响仅降至 0.2dB。
最后,ADC1 的噪声分量(噪声系数 = 20dB)减少至仅 0.6dB,因为它会被两个 LNA 的 27dB 增益降低。因此,您最终会得到 1.8dB 的系统噪声系数,从而留下大约 0.2dB 的余量来检测微弱的输入信号。
图 3. 接收信号链中各个噪声系数贡献的图示
表 3. 计算各个噪声系数的贡献
高速数据转换器很少在器件特定数据表中列出噪声系数。可以使用方程式 3 根据 ADC32RF54 射频采样 ADC 的常用数据表参数(请参阅表 4)计算 ADC 的噪声系数。
表 4. ADC32RF54 的数据表参数
ADC Noise figure (dB) = PSIG,dBm + 174 dBm – SNR (dBFS) – bandwidth (Hz)
方程式 3
对于 ADC32RF54,噪声系数计算结果为:
噪声系数(1 倍 AVG)= 20.3dB
10log[(1.1/2/sqrt(2))2/100 x 1000] + 174 - 64.4 -10log[2.6e9/2]
噪声系数(2 倍 AVG)= 19.3dB
10log[(1.35/2/sqrt(2))2/100 x 1000] + 174 - 67.1 -10log[2.6e9/2]
结论
接收器噪声系数是一个重要的系统设计参数,因为它决定了最弱可检测信号。除了非常低的固有噪声系数外,ADC32RF54 还提供了高 SNR,即使在输入功率信号较大的情况下,也能让系统保持其噪声系数。具有相同噪声系数但 SNR 更低的 ADC 需要降低输入增益,以防止饱和,在这种情况下,ADC 噪声系数开始增加总体噪声。
点击阅读原文
即刻阅读《模拟设计期刊》电子版,更多相关知识等待解锁!