【技术沙龙】金刚石-半导体的未来之星

求是缘半导体联盟 2024-11-23 08:32

求是缘半导体联盟会员单位:浙江六方半导体科技有限公司

半导体涂层材料创新者

具备技术平台|面向多个半导体应用场景提供关键涂层材料。

1.公司成立于2018年,致力于半导体新材料研发,聚焦在半导体上道晶体生长、外延等工艺的关键涂层材料。

2.公司创始人为前中科院教授,深耕半导体材料行业多年,具有丰富的技术产业化实践经验。公司设有双研发中心,研发团队配置雄厚:六方研发中心+甬江实验室热场材料创新中心。

3.公司已建2个生产基地,新一期生产基地规划落地阶段。

4.入选浙江省产业链协同创新集成电路方向指南企业,获得半导体上市公司立昂微(605358)、江丰电子(300666)及其关联方的战略性支持。


随着科技的飞速发展和全球对高性能、高效率半导体器件需求的不断增长,半导体衬底材料作为半导体产业链中的关键技术环节,其重要性日益凸显。其中,金刚石作为潜在的第四代“终极半导体”材料,因其卓越的物理化学特性,正逐步成为半导体衬底材料领域的研究热点和市场新宠。

金刚石的性质

金刚石是典型的原子晶体和共价键晶体,晶体结构如图1(a)所示,它由中间的碳原子以共价键的形式与其余三个碳原子进行结合。图1(b)为晶胞结构,反映了金刚石的微观周期性和结构上的对称性。

图 1  金刚石的(a)晶体结构[1];(b)晶胞结构[2]


金刚石是世界上最硬的材料,具备独特的物理化学性质,在力学、电学和光学等方面有着有优异的特性如图2:金刚石有着超高硬度和耐磨性,适用切割材料和压头等[3],在磨具方面得到很好的应用[4];(2)金刚石具有目前所知的天然物质中最高的热导率(2200W/(m·K)),比碳化硅(SiC)大4倍,比硅(Si)大13倍,比砷化稼(GaAs)大43倍,是铜和银的4~5倍,应用于高功率器件。低的热膨胀系数(0.8×10-6-1.5×10-6K-1)和高的弹性模量等优良性能。是一种具有良好前景的优异的电子封装材料。空穴迁移率为4500 cm2·V-1·s-1 ,电子迁移率为3800 cm2·V-1·s-1,使其可应用于高速开关器件;击穿场强为13MV/cm,可应用于高压器件;巴利加优值高达24664,远远高于其他材料(该数值越大用于开关器件的潜力越大)。多晶金刚石还具有装饰作用,金刚石的涂层不仅具有闪光效果还有多种颜色。用于高端钟表的制造,奢侈品的装饰性涂层以及直接作为时尚制品。金刚石其强度和硬度是康宁玻璃的6倍和10倍,因此也被应用于手机显示屏和照相机镜头。

图2 金刚石和其余半导体材料的性质

金刚石的制备

金刚石生长主要分为HTHP法(高温高压法)和CVD法(化学气相沉积法),CVD法因其耐高压、大射频、低成本、耐高温等优势,成为制备金刚石半导体衬底的主流方法。二者生长方法侧重在不同应用,未来相当长时间内,二者会呈现出互补的关系。

高温高压法(HTHP)通过将石墨粉、金属触媒粉和添加剂按照原材料配方所规定的比例混合后再经过造粒、静压、真空还原、检验、称重等工序制作成石墨芯柱,然后将石墨芯柱与复合块、辅件等密封传压介质组装在一起形成可用于合成金刚石单晶的合成块,之后放入六面顶压机内进行加温加压并长时间保持恒定,待晶体生长结束后停热卸压并去除密封传压介质取得合成柱,之后进行提纯处理和分选检测获得金刚石单晶。

图3 六面顶压机结构图

由于金属催化剂的使用,工业HTHP法制备的金刚石颗粒中往往含有一定杂质与缺陷,而且由于氮元素的掺入通常呈现黄色色调。经过技术升级,高温高压制备金刚石已经可以使用温度梯度法生产大颗粒高品质金刚石单晶,实现金刚石工业磨料级向宝石级的转变。

图4 金刚石形貌图

化学气相沉积法(Chemical Vapor Deposition,CVD)是合成金刚石薄膜最

热门的方法[7]。主要有热丝化学气相沉积(Hot filament CVD, HFCVD)和微波等离子体化学气相沉积(Microwave PCVD, MPCVD)等。

(1) 热丝化学气相沉积法

HFCVD的基本原理是在真空腔室里将反应气体与高温金属丝碰撞,发生催化裂解,生成多种具有强烈活性的“不带电”的基团,产生的碳原子沉积在衬底材料上,形成纳米金刚石。设备操作简单,生长成本低,应用广泛,易实现工业化生产。由于热分解效率较低,且来自灯丝和电极的金属原子污染较为严重,HFCVD通常只用来制备晶界包含大量sp2相碳杂质的多晶金刚石膜,因此一般呈灰黑色。

图5 (a)HFCVD 设备图,(b)真空腔室结构图[8]

(2) 微波等离子体化学气相沉积

MPCVD法借助磁控管或固态源产生特定频率的微波,通过波导馈入反应腔体,根据反应腔体特殊的几何尺寸在衬底上方形成稳定的驻波。高度聚焦的电磁场在此处击穿反应气体甲烷和氢气从而形成稳定的等离子球,富含电子、离子、活性原子基团在合适的温度和压力下就会在衬底上成核生长,使之同质外延缓慢长大。与HFCVD相比,它避免了因热金属丝蒸发对金刚石膜产生的污染增加纳米金刚石薄膜的纯度,在工艺中可使用的反应气体比HFCVD更多,沉积的金刚石单晶比天然钻石还要纯净,因此可制备光学级金刚石多晶窗口、电子级金刚石单晶等。

图6 MPCVD内部结构

金刚石的发展与困境

自从1963年成功研制出第一颗人造金刚石后,经过60多年的发展,我国是世界上人造金刚石产量最多的国家,占全球90%以上。但中国金刚石主要集中在中低端应用市场上,例如磨料磨具磨削、光学、污水处理等领域。国内金刚石发展大而不强,在高端设备以及电子级材料方面等众多领域处于下风。在CVD金刚石领域的学术成果来看,美国、日本和欧洲的研究处于领先位置,我国的原创性研究偏少。在“十三五”重点研发的支持下,国内拼接外延大尺寸金刚石单晶已经跃居世界一流位置,在异质外延单晶方面,尺寸和质量仍存在较大的差距,在“十四五”的规划上或将实现超越。

世界各国研究者对金刚石的生长、掺杂、器件组装等方向开展了深入研究,以期实现金刚石在光电子器件方面的应用,满足人们对金刚石这种多功能材料的期待。然而,金刚石的禁带宽度高达5.4 eV,其p型电导可通过硼掺杂实现,而n型电导的获得十分困难。各国研究者将杂质氮[8]、磷[9]、硫[10]等以替代晶格中碳原子的形式掺入到单晶或多晶金刚石中,由于杂质的施主能级深或电离困难等原因,都没有获得良好的n型电导,极大地限制了金刚石基电子器件的研究和应用。同时,大面积单晶金刚石难以像单晶硅片一样大量制备,是金刚石基半导体器件研制的另一个难点[11]。以上两个难题表明,现有的半导体掺杂和器件研制理论难以解决金刚石的n型掺杂及器件组装等问题,需要寻求另外的掺杂方法和掺杂剂,甚至发展新的掺杂及器件研制原理。

过高的价格也同样限制了金刚石的发展,以硅价格为对比,碳化硅的价格是硅的30-40倍,氮化镓的价格是硅的650-1300倍,而合成金刚石材料价格大致为硅的10000倍[12]。太高的价格限制了金刚石的发展和应用,如何降低成本是打破发展困境的一个突破点。

展望

金刚石半导体目前虽然发展遇到困难,但仍然被认为是制备下一代高功率、高频、高温及低功率损耗电子器件最有希望的材料,目前大热门的半导体由碳化硅占据,碳化硅具有金刚石的结构,但是一半的原子为碳,因此可以视之为半个金刚石,碳化硅应为硅晶时代转换成金刚石半导体时代的过渡产品。

一句“钻石恒久远,一颗永流传”让戴比尔斯(De Beers)的名号闻名至今,对金刚石半导体来说,创造出另一种辉煌,或许要永久不断地去探索。

参考文献

[1] Ae A, Jmm B. Superior wear resistance of diamond and DLC coatings [J]. Current Opinion in Solid State and Materials Science, 2018, 22(6): 243-254.

[2]李建军. 基于 MATLAB 的金刚石结构的动态图示 [J]. 教育教学论坛, 2019, (47): 4.

[3] Bulut B, Gunduz O, Baydogan M, et al. Determination of matrix composition for diamond cutting tools according to the hardness and abrasivity properties of rocks to be cut [J]. International Journal of Refractory Metals & Hard Materials, 2021, 95.

[4] Novikov N V, Dub S N. Hardness and fracture toughness of CVD diamond film [J]. Diamond & Related Materials, 1996, 5(9): 1026–1030.

[5] Sexton T N, Cooley C H. Polycrystalline diamond thrust bearings for down-hole oil and gas drilling tools [J]. Wear, 2009, 267(5): 1041-1045.

[6] 郝跃. 宽禁带与超宽禁带半导体器件新进展[J]. 科技导报, 2019, 37(3): 58-61.

[7] Pierson H O. CVD Diamond - ScienceDirect [J]. Handbook of Carbon, Graphite, Diamonds and Fullerenes, 1993.

[8] ALEKSOV A, DENISENKO A, KOHN E. First epitaxial pnp bipolar transistor on diamond with deep nitrogen donor[J]. Electronics Letters, 1999, 35(20): 1777.

[9] SQUE SJ,JONES R, GOSS J P, et al. Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes[J]. Physical Review Letters, 2004, 92(1): 017402.

[10] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465.

[11] 胡晓君, 郑玉浩, 陈成克, 等. 纳米金刚石薄膜的掺杂, 表/界面调控及性能研究[J]. Journal of Synthetic Crystals, 2022, 51(5): 865-874.

[12]IEEE Spectrum:This Diamond Transistor Is Still Raw, But Its Future Looks Bright.2022.5.17.https://spectrum.ieee.org/this-diamond-transistor-is-still-raw-but-its-future-looks-bright


欢迎加入联盟

如果您还未有正式申请加入我们求是缘半导体联盟,也欢迎在线申请个人会员120元/人/单位会员 3000元/单位/


会员在线申请:

扫描以下太阳码进入小程序界面“会员申请↓↓↓


联盟简介
 
缘于求是 · 芯想全球

求是缘半导体联盟是全球半导体产业生态链上的多个高校的校友、公司、组织机构、政府园区及科研院校等自愿组成的跨区域的非营利性公益组织。联盟由浙江大学校友发起,总部位于上海,其主要职能是为半导体和相关行业的人才、技术、资金、企业运营管理、创新创业等方面提供交流合作和咨询服务的平台,致力于推动全球,特别是中国大陆区域的,半导体及相关产业的发展。


目前联盟不定期举办线上、线下专题活动,有一周芯闻、名家专栏、招聘专栏、活动报道、人物访谈等多种资讯栏目,同时提供咨询、资源对接、市场拓展等服务。





求是缘半导体联盟 求是缘半导体联盟,是由浙江大学半导体产业校友在2015年3月31日启动,主要是为全球多个高校校友和单位提供一个在半导体产业上的技术、资金、人才、管理、职业发展生活等方面的公益性全球交流平台.
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 343浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 66浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 303浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 36浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 443浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 303浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 336浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 285浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 57浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 76浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 37浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 543浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦