如何优化开关电源的效率?

原创 亚德诺半导体 2024-11-22 18:06

对于功率转换器,寄生参数最小的热回路PCB布局能够改善能效比,降低电压振铃,并减少电磁干扰(EMI)。本文讨论如何通过最小化PCB的等效串联电阻(ESR)和等效串联电感(ESL)来优化热回路布局设计。本文研究并比较了影响因素,包括解耦电容位置、功率FET尺寸和位置以及过孔布置。通过实验验证了分析结果,并总结了最小化PCB ESR和ESL的有效方法。


热回路和PCB布局寄生参数

开关模式功率转换器的热回路是指由高频(HF)电容和相邻功率FET形成的临界高频交流电流回路。它是功率级PCB布局的最关键部分,因为它包含高dv/dt和di/dt噪声成分。设计不佳的热回路布局会产生较大的PCB寄生参数,包括ESL、ESR和等效并联电容(EPC),这些参数对功率转换器的效率、开关性能和EMI性能有重大影响。


图1显示了同步降压DC-DC转换器原理图。热回路由MOSFET M1和M2以及解耦电容CIN形成。M1和M2的开关动作会产生高频di/dt和dv/dt噪声。CIN提供了一个低阻抗路径来旁路高频噪声成分。然而,器件封装内和热回路PCB走线上存在寄生阻抗(ESR、ESL)。高di/dt噪声通过ESL会引起高频振铃,进而导致EMI。ESL中存储的能量在ESR上耗散,导致额外的功率损耗。因此,应尽量减小热回路PCB的ESR和ESL,以减少高频振铃并提高效率。

准确提取热回路的ESR和ESL,有助于预测开关性能并改进热回路设计。器件的封装和PCB走线均会影响回路的总寄生参数。本文主要关注PCB布局设计。有一些工具可帮助用户提取PCB寄生参数,例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之类的商用工具可提供准确的仿真,但通常价格昂贵。FastHenry/FastCap是一款基于部分元件等效电路(PEEC)数值建模的免费工具 ,可以通过编程提供灵活的仿真来探索不同的版图设计,但需要额外的编程。FastHenry/FastCap寄生参数提取的有效性和准确性已经过验证,并与Ansys Q3D进行了比较,结果一致。在本文中,FastHenry用作提取PCB ESR和ESL的经济高效的工具。


图1.带热回路ESR和ESL的降压转换器


热回路PCB的ESR和ESL与解耦电容位置的关系
本部分基于ADI公司的 LTM4638 µModule® 稳压器演示板DC2665A-B来研究CIN位置的影响。LTM4638是一款集成式20 VIN、15 A降压型转换器模块,采用小型6.25 mm × 6.25 mm × 5.02 mm BGA封装。它具有高功率密度、快速瞬态响应和高效率特性。模块内部集成了一个小的高频陶瓷CIN,不过受限于模块封装尺寸,这还不够。图2至图4展示了演示板上的三种不同热回路,这些热回路使用了额外的外部CIN。第一种是垂直热回路1(图2),其中CIN1放置在μModule稳压器下方的底层。µModule VIN和GND BGA引脚通过过孔直接连接到CIN1。这些连接提供了演示板上的最短热回路路径。第二种热回路是垂直热回路2(图3),其中CIN2仍放置在底层,但移至μModule稳压器的侧面区域。其结果是,与垂直热回路1相比,该热回路添加了额外的PCB走线,预计ESL和ESR更大。第三种热回路选项是水平热回路(图4),其中CIN3放置在靠近μModule稳压器的顶层。µModule VIN和GND引脚通过顶层铜连接到CIN3,而不经过过孔。然而,顶层的VIN铜宽度受其他引脚排列的限制,导致回路阻抗高于垂直热回路1。表1比较了FastHenry提取的热回路 PCB ESR和ESL。正如预期的那样,垂直热回路1的PCB ESR和ESL最低。

图2.垂直热回路1:(a)俯视图和(b)侧视图

图3.垂直热回路2:(a)俯视图和(b)侧视图

图4.水平热回路:(a)俯视图和(b)侧视图

表1.使用FastHenry提取的不同热回路的PCB ESR和ESL


为了通过实验验证不同热回路的ESR和ESL,我们测试了12V转1V CCM运行时演示板的效率和VIN交流纹波。理论上,ESR越低,则效率越高,而ESL越小,则VSW振铃频率越高,VIN纹波幅度越低。图5a显示了实测效率。垂直热回路1的效率最高,因为其ESR最低。水平热回路和垂直热回路1之间的损耗差异也是基于提取的ESR计算的,这与图5b所示的测试结果一致。图5c中的VIN HF纹波波形是在CIN上测试的。水平热回路具有更高的VIN纹波幅度和更低的振铃频率,因此验证了其回路ESL高于垂直热回路1。另外,由于回路ESR更高,因此水平热回路的VIN纹波衰减速度快于垂直热回路1。此外,较低的VIN纹波降低了EMI,因而可以使用较小的EMI滤波器。


图5.演示板测试结果:(a)效率,(b)水平回路与垂直回路1之间的损耗差异,(c)15A输出时M1导通期间的VIN纹波

表2.对于不同器件形状和位置,使用FastHenry提取的热回路PCB ESR和ESL


热回路PCB ESR和ESL与MOSFET尺寸和位置的关系
对于分立式设计,功率FET的布置和封装尺寸对热回路ESR和ESL也有重大影响。本部分对使用功率FET M1和M2以及解耦电容CIN的典型半桥热回路进行了建模和研究。图6比较了常见功率FET封装尺寸和放置位置。表2显示了每种情况下提取的ESR和ESL。

情况(a)至(c)展示了三种常见功率FET布置,其中采用5 mm × 6 mm MOSFET。热回路的物理长度决定了寄生阻抗。与情况(a)相比,情况(b)中的90°形状布置和情况(c)中的180°形状布置的回路路径更短,导致ESR降低60%,ESL降低80%。由于90°形状布置显示出了优势,我们基于情况(b)研究了更多情况,以进一步降低回路ESR和ESL。情况(d)将一个5 mm × 6 mm MOSFET替换为两个并联的3.3mm × 3.3mm MOSFET。由于MOSFET尺寸更小,回路长度进一步缩短,导致回路阻抗降低7%。情况(e)将一个接地层放置在热回路层下方,与情况(d)相比,热回路ESR和ESL进一步降低2%。原因是接地层上产生了涡流,其感应出相反的磁场,相当于降低了回路阻抗。情况(f)构建了另一个热回路层作为底层。如果将两个并联MOSFET对称布置在顶层和底层,并通过过孔连接,则由于并联阻抗,热回路PCB ESR和ESL的降低更加明显。因此,在顶层和底层上以对称90°形状或180°形状布置较小尺寸的器件,可以获得最低的PCB ESR和ESL。


为了通过实验验证MOSFET布置的影响,我们使用了ADI公司的高效率4开关同步降压-升压控制器演示板LT8390/DC2825A和LT8392/DC2626A。如图 7a和图7b所示,DC2825A采用直线MOSFET布置,DC2626A采用90°形状的MOSFET布置。为了进行公平比较,两个演示板配置了相同的MOSFET和解耦电容,并在36V转12V/10A、300 kHz降压操作下进行了测试。图7c显示了M1导通时刻测得的VIN交流纹波。采用90°形状的MOSFET布置时,VIN纹波的幅度更低,谐振频率更高,这就验证了热回路路径较短导致PCB ESL更小。相反,直线MOSFET布置的热回路更长,ESL更高,导致VIN纹波幅度要高得多,并且谐振频率更低。根据Cho和Szokusha研究的EMI测试结果,较高的输入电压纹波还会导致EMI辐射更严重。


图6.热回路PCB模型:(a)5mm×6mm MOSFET,直线布置;(b)5mm×6mm MOSFET,以90°形状布置;(c)5mm×6mm MOSFET,以180°形状布置;(d)两个并联的3.3mm×3.3mm MOSFET,以90°形状布置;(e)两个并联的3.3mm×3.3mm MOSFET,以90°形状布置,带有接地层;(f)对称的3.3mm×3.3mm MOSFET,位于顶层和底层,以90°形状布置。

图7.(a) LT8390/DC2825A热回路,MOSFET以直线布置;(b) LT8392/DC2626A热回路,MOSFET以90°形状布置;(c) M1导通时的VIN纹波波形。

图8.热回路PCB模型,(a) 5个GND过孔靠近CIN和M2布置;(b) 14个GND过孔布置在CIN和M2之间;(c) 基于(b),GND上再布置6个过孔;(d) 基于(c),GND区域上再布置9个过孔。


热回路PCB的ESR和ESL与过孔布置的关系

热回路中的过孔布局对回路ESR和ESL也有重要影响。图8对使用两层PCB结构和直线布置功率FET的热回路进行了建模。FET放置在顶层,第二层是接地层。CIN GND焊盘和M2源极焊盘之间的寄生阻抗Z2是热回路的一部分,作为示例进行研究。Z2是从FastHenry提取的。表3总结并比较了不同过孔布置的仿真ESR2和ESL2


通常,添加更多过孔会降低PCB寄生阻抗。然而,ESR2和ESL2的降低程度与过孔数量并不是线性比例关系。靠近引脚焊盘的过孔,所导致的PCB ESR和ESL的降低最明显。因此,对于热回路布局设计,必须将几个关键过孔布置在靠近CIN和MOSFET焊盘的位置,以使高频回路阻抗最小。


表3.使用不同过孔布置时提取的热回路PCB ESR2和ESL2

结论
减小热回路的寄生参数有助于提高电源效率,降低电压振铃,并减少EMI。为了尽量减小PCB寄生参数,我们研究并比较了使用不同解耦电容位置、MOSFET尺寸和位置以及过孔布置的热回路布局设计。更短的热回路路径、更小尺寸的MOSFET、对称的90°形状和180°形状MOSFET布置、靠近关键元器件的过孔,均有助于实现最低的热回路PCB ESR和ESL。





👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 117浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 188浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 218浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 131浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 175浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 151浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 104浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 126浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 107浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 97浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 224浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 159浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦