【跨年技术巨献】SiC MOSFET在实际应用栅极开关运行条件下的参数变化(AC BTI)

跨年技术巨献

12月28日,阿里达摩院发表了2021十大科技趋势,令业内欢欣鼓舞的是“以氮化镓、碳化硅为代表的第三代半导体迎来应用大爆发”列为十大之首。


碳化硅MOSFET在光伏、充电、新能源汽车等应用领域优于IGBT的卓越性能不用质疑。但与此同时,因其材料、结构的特殊性,碳化硅MOSFET的可靠性与寿命也一直是工程师们关注与讨论的热点。


跨年8期连载,我们以白皮书的形式介绍碳化硅MOSFET栅极氧化层可靠性,交流和直流偏压温度不稳定性,体二极管退化,抗短路和宇宙射线能力,产品标准和汽车级认证等8大话题,全文3万多字。


今天我们继续讲解


《SiC MOSFET在实际应用栅极开关运行条件下的参数变化(AC BTI)》


简 介


多年来,英飞凌一直在进行超越标准质量认证方法的应用相关试验,以期为最终应用确立可靠的安全运行极限。阈值电压和导通电阻在实际应用运行条件下的漂移,是我们深入研究的一个“SiC特有”的重点问题。我们将SiC MOSFET在高频率双极栅极开关条件下和高温下的应力称之为“AC偏压温度不稳定性(BTI)试验”。请注意,这一新的“AC BTI试验”是对标准化的“DC BTI试验”进行重要延伸后所得的结果,DC BTI试验在前一章中已经讨论过,通常用于进行Si和SiC MOSFET技术的质量认证。我们决定在SiC MOSFET的标准质量认证体系中加入这些新型的应力试验是因为,事实表明,在特定的交流栅极应力条件下,参数漂移可能超过施加标准直流栅极应力后的典型值。这与DC BTI始终被视为“最坏情况”的Si技术是不同的。为了增进对这一新的漂移现象的认识,也为了指导客户在设计中如何避免可能危险的临界运行条件,英飞凌已在2018年发布了一份描述AC BTI的基本特点的应用说明(AN),并阐述了它在典型的应用环境中可能造成的后果。2019年,我们根据最新的发现对该应用说明进行了完善和扩展。本章内容可以算作英飞凌的应用说明的补充资料,旨在更深入地了解AC BTI现象与其他因素的关系。

AC BTI建模


英飞凌在各种运行条件下开展了广泛的试验,以期建立一个半经验的预测模型,用于描述阈值电压(VTH)在典型的SiC MOSFET应用中的变化,这些变化跟应力施加时间(tS)、栅极偏压下限(VGL)、栅极偏压上限(VGH)、开关频率(f)和运行温度(T)等相关。


在高MOSFET开关频率(比如500kHz)下测量阈值电压是特别有挑战的,因为它不仅要求电气参数的分辨率高,还要求测量延时达到微秒级。为此,英飞凌已开发出定制的高端应力/试验设备,可用于在AC栅极应力试验期间进行快速的原位参数监测。


AC BTI的特点之一是,在我们研究过的所有器件中阈值电压漂移都是正的。阈值电压增大可降低MOS沟道过驱动电压(VGH-VTH),从而使得器件的沟道电阻(Rch)变大。


在公式(2)中,L代表沟道长度,W代表沟道宽度,μn代表自由电子迁移率,Cox代表栅极氧化层电容,VGH代表栅极电压上限,而VTH代表器件的阈值电压。在高功率器件中,沟道电阻只是器件的总导通电阻的一个分量。


在公式(3)中,Rch代表沟道电阻,RJFET代表结型场效应晶体管(JFET)电阻,Repi代表漂移带的外延层电阻,而RSub代表高掺杂SiC衬底的电阻。沟道电阻(∆Rch)因为栅极过驱动电压(∆VTH)降低而增大,最终使得器件的总导通电阻(∆RON)略微变大。总导通电阻增大可能导致静态损耗更大,进而导致运行期间的结温略微升高。为了防止在125°C下进行10年的连续开关操作期间,发生可能导致导通电阻出现潜在临界漂移(>15%,在数据表的最大额定值中已经考虑)的运行条件,英飞凌的应用说明提供了指导图表来说明推荐的栅极驱动电压和频率。这些指导图表依据的是在深入研究和测量AC BTI的基本特点之后创建的退化模型。

AC BTI的基本特点


本段主要借助一系列实验数据来揭示和阐明AC BTI的基本特点。漂移模型与数据进行拟合,以得到半经验模型系数。所示的拟合曲线对应用于计算AN中栅极电压指导图表的漂移模型。


1

与开关频率(f)的关系


AC BTI取决于开关事件次数,且AC VTH漂移符合幂律:


因此,更恰当的做法是绘制AC漂移与开关次数的关系图,而不是像DC BTI的典型做法一样绘制漂移与应力施加时间的关系图。在图12中,我们比较了两种不同的开关频率。当开关次数相同时,所看到的漂移是相似(不是完全一样)的,它与总应力施加时间无关。正是因为这个原因,相比在相对较低的开关频率下运行的应用(比如驱动),在较高开关频率下运行的应用(比如太阳能)更容易受到AC BTI的影响。此外,由于受影响的主要是静态损耗,所以AC BTI漂移对应用中的总损耗的最终影响,取决于给定的导通损耗与开关损耗之比。在某个特定的应用中,如果开关损耗在总损耗中占据绝对比例,那么即使开关频率更大,导通损耗的增加对于系统设计的影响也不大。


图12.在加速的栅极电压(V GH >18V;V GL <-5V)和温度(TS>150°C)条件下测量的AC VTH漂移。记录所用的总应力施加时间相同、但应力施加频率(50和500kHz)不同时的数据。AC V TH 漂移显示出与开关次数成正比的幂律式增长。漂移模型用虚线表示。


2

与栅极偏压下限(VGL)的关系


AC BTI还有个特点是,它与栅极偏压下限(VGL)的关系。事实上,如果SiC MOSFET长时间在在关断状态施加负栅极偏压的模式下运行,AC BTI只会导致VTH漂移增大。如果器件是在VGL=0V时关断的,则获得的VTH漂移显示出典型的DC BTI漂移行为,而不依赖于开关次数。在关断状态下较大的负栅极电压可通过以下方式影响VTH漂移(参见图13):当开关次数较少时,VTH漂移因为弛豫效应而较少;但是,当开关次数较多时,VTH漂移通常因为负关态栅极电压更高导致漂移斜率更大(幂律指数)而变大。


图13.短时间内施加大量脉冲(f=500kHz)获得的加速条件下,以及上限栅极电压(VGH>+18V)和温度(TS>150°C)条件下,测量的AC VTH漂移。记录使用不同栅极电压下限时的数据。当使用的栅极电压下限高于-2.5V时(比如-1V),VTH漂移的幅度和斜率类似于或低于DC BTI。当施加更负的下限栅极电压时(比如-5V),AC BTI在经过大量的开关周期后开始占据主导地位。这是由AC BTI的漂移斜率(幂律指数)变大导致的。漂移模型(虚线)与实测数据的吻合度非常好。


3

与栅极偏压上限(VGH)及温度(T)的关系


AC BTI与通态栅极电压(VGH)和运行温度(T)的关系与DC BTI类似。如图14和图15所示,在较高的VGH等级和高温下,VTH漂移值更大。但是,这并不一定意味着,这种运行条件对于应用而言更为关键。


当VGH等级较高时,可以观察到BTI更大。但是,由于栅极驱动电压变大,总导通电阻对VTH变化变得不那么敏感。因此,尽管VTH漂移变大,但RON在VGH值较大时的相对变化可能反倒变小。这使得相比15V的通态电压,在18V的通态电压下运行得到的曲线更为缓和。


高温通常也可导致BTI变大。另外,在高温下,JFET和漂移区(epi)电阻相对于沟道电阻变得更加明显。因此,尽管VTH漂移变大,但RON在温度更高时的相对变化可能同样更小。


图14.在加速频率(f=500kHz)和温度(TS>150°C)条件下测量的AC V TH 漂移。记录在典型的栅极电压下限和不同的栅极电压上限时的数据。施加较大的栅极电压上限导致实测数据发生近似平行的漂移。漂移模型(虚线)与实测数据的吻合度非常好。


图15.在加速频率(f=500kHz)和栅极电压上限(VGH>18V)条件下测量的AC VTH漂移。记录在典型的栅极电压下限和不同应力温度下的数据。温度较高时的应力导致实测数据发生平行漂移。漂移模型(虚线)符合实测数据的趋势,但在本试验中稍微高估了漂移的绝对值。


4

漂移饱和


我们进行了近1年的开关频率加速AC栅极应力实验,以研究在典型应用开关条件下的长期AC BTI。在这些长期实验中观察到的漂移表明,在寿命终期实测的AC BTI漂移可能低于通过漂移模型预测的漂移,因为漂移效应已开始饱和。


5

与负载电流的关系


为完成评估,在各种负载电流下进行了几项实验。所观察到的VTH和RON漂移基本上符合AC BTI漂移模型,这表明负载电流本身并不会改变观测到的漂移行为。但也发现,栅极信号过冲和下冲——在逆变器应用中很常见——可能影响AC BTI。这一点在英飞凌的第二版应用说明中已有说明,其中还就如何正确地评估和抑制应用中的过冲和下冲给出具体的指导。




关于英飞凌

英飞凌设计、开发、制造并销售各种半导体和系统解决方案。其业务重点包括汽车电子、工业电子、射频应用、移动终端和基于硬件的安全解决方案等。


英飞凌将业务成功与社会责任结合在一起,致力于让人们的生活更加便利、安全和环保。半导体虽几乎看不到,但它已经成为了我们日常生活中不可或缺的一部分。不论在电力生产、传输还是利用等方面,英飞凌芯片始终发挥着至关重要的作用。此外,它们在保护数据通信,提高道路交通安全性,降低车辆的二氧化碳排放等领域同样功不可没。

英飞凌工业半导体 英飞凌工业半导体同名公众号是英飞凌功率半导体产品技术和应用技术的交流平台和值得收藏的资料库。提供新产品介绍,应用知识和经验分享,IGBT在线课程,线上线下研讨会发布和回放。 欢迎来稿:IPCWechat@infineon.com。
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦