傅里叶反变换和拉普拉斯反变换中1/2π系数的由来

原创 云深之无迹 2024-11-21 10:59

在信号系统里面有着俩大变换,都是往时域变的,在学习的过程中我想解决一个疑问,就是为什么里面出现了看起来格格不入的1/2π系数。

原因就在于一个信号其傅里叶变换是一个面积为2π,出现在ω=ω0处的单独冲激,至于积分号那是线性组合。

傅里叶变换将一个函数从时域变换到频域,而傅里叶反变换则正好相反,它将一个函数从频域变换回时域。

傅里叶变换: 把一个信号分解成不同频率的正弦波的叠加。

傅里叶反变换: 将这些正弦波重新组合起来,还原成原来的信号。

设 F(ω) 是函数 f(t) 的傅里叶变换,则 f(t) 可以通过傅里叶反变换求得:

f(t) = (1/2π) ∫[从-∞到+∞] F(ω) * e^(iωt) dω
  1. f(t):时域信号

  2. F(ω):频域信号

  3. ω:角频率

  4. i:虚数单位


观察公式发现是一个积分,是关于频率的。

接下来看拉普拉斯的:插一个推导,其实拉普拉斯就是在上面傅里叶的公式两边乘了衰减变量,直接就变换了。

当拉普拉斯变换的复变量s取纯虚数时,拉普拉斯变换就退化为傅里叶变换。为了保持一致性,拉普拉斯变换中也常常引入1/2π。

这个推导也确实是这样

如果 F(s) 是函数 f(t) 的拉普拉斯变换,那么 f(t) 求得:

f(t) = (1/2πj) ∫[从γ-j∞到γ+j∞] F(s) * e^(st) ds
  1. f(t):时域函数

  2. F(s):复频域函数

  3. s:复变量

  4. j:虚数单位

  5. γ:实数,满足积分路径在F(s)的所有极点的右侧


在拉普拉斯里面的积分变量是一个复变量,也叫含参积分,好像还没有复习,一会儿学习。

第一种解释是能量谱密度:傅里叶变换将时域信号转化为频域信号,而频谱的平方与信号的能量密度成正比。为了确保能量在时域和频域上的等价,需要引入一个归一化因子。

但是我对这个结果不满意,太模糊了,我看了一些过程,觉得真理蕴含于公式之中。

1. 从傅里叶变换出发

假设已经得到了一个函数的傅里叶变换F(ω),目标是通过F(ω)求出原来的函数f(t)。

2. 引入一个积分

我们考虑下面的积分:

(1/2π) ∫[从-∞到+∞] F(ω) * e^(iωt) dω

3. 将F(ω)替换为其定义

将F(ω)的定义代入上式,得到:

(1/2π) ∫[从-∞到+∞] (∫[从-∞到+∞] f(τ) * e^(-iωτ) dτ) * e^(iωt) dω

4. 交换积分顺序

由于积分的线性性和绝对可积性,我们可以交换两个积分的顺序:

(1/2π) ∫[从-∞到+∞] f(τ) * (∫[从-∞到+∞] e^(iω(t-τ)) dω) dτ

5. 计算内层积分

内层积分是一个典型的傅里叶变换,其结果是一个狄拉克δ函数:

∫[从-∞到+∞] e^(iω(t-τ)) dω = 2πδ(t-τ)

6. 代入并化简

将内层积分的结果代入上式,得到:

(1/2π) ∫[从-∞到+∞] f(τ) * 2πδ(t-τ) dτ

7. 利用δ函数的筛选性质

根据δ函数的筛选性质,上式可以化简为:

f(t) = (1/2π) ∫[从-∞到+∞] F(ω) * e^(iωt) dω

整个推导过2π就出现在了内层积分的计算中,这一步将傅里叶变换与狄拉克δ函数联系起来。

狄拉克δ函数是一个广义函数,它在t=0处取无穷大,而在其他地方取值为0,并且其积分等于1。这个特殊的性质使得它可以表示一个集中在一点的单位冲激。 广义函数不再广义-在信号与系统中的应用 

在信号处理中,狄拉克δ函数可以用来表示一个理想的冲激信号,即在瞬间产生一个无限大的能量,然后迅速衰减为零。

来详细看一下内层积分:

[从-∞到+∞] e^(iω(t-τ)) dω

这个积分本质上是一个傅里叶变换。如果我们将e^(iω(t-τ))看作一个函数,那么这个积分就是求它的傅里叶变换。

根据傅里叶变换的对称性,我们可以得出:

傅里叶变换{e^(iωt)} = 2πδ(ω)

也就是说,e^(iωt)的傅里叶变换是一个在ω=0处有无限大值的狄拉克δ函数。

因此,将t替换为t-τ,我们得到:

∫[从-∞到+∞] e^(iω(t-τ)) dω = 2πδ(t-τ)

为什么会得到狄拉克δ函数?

频率域的集中性: e^(iω(t-τ))表示一个频率为ω的复指数信号。当t=τ时,这个信号的相位为0,幅值为1。也就是说,这个信号在频率域中只包含一个频率成分,即ω。

时域的无限窄脉冲: 为了在频域中只包含一个频率成分,对应的时域信号必须是一个无限窄的脉冲,即狄拉克δ函数。

常老板最近在云南玩耍,大早上的就分享过来了日照金山,真好看捏!

评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 48浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 54浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 118浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 58浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 150浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 154浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 53浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 80浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦