清华大学&华中师范大学&中国科学院物理所AM:晶格氧氧化还原的起源与调控—化学计量层状正极材料中过渡金属网络的动态转变

锂电联盟会长 2024-11-17 09:17

点击左上角“锂电联盟会长”,即可关注!

第一作者:高昂
通讯作者:谷林,郭彦炳,高昂,张庆华
通讯地址:清华大学,华中师范大学,中国科学院物理所
论文链接:
https://doi.org/10.1002/adma.202412673
论文速递
本研究示了化学计量层状正极材料中晶格氧氧化还原(LOR)现象的起源,并提出了一种通过设计过渡金属(TM)网络来稳定LOR的新策略。研究团队通过实验观察和理论计算发现,过渡金属离子的迁移在电化学过程中形成了动态的TM网络,这一网络结构有助于LOR的可逆性。此外,研究还提出了一个基于t2g轨道占据规则的结构设计策略,用以指导设计有序的TM网络,从而为开发高能量密度的锂离子电池正极材料提供了新的方向。    
研究背景
随着对更高能量密度电池需求的增长,传统的锂离子电池正极材料,特别是化学计量层状锂金属氧化物正极材料,正接近其能量密度的极限。这是因为它们主要依赖于单一阳离子的氧化还原化学。为了突破这一限制,研究人员开始探索晶格氧氧化还原(LOR)反应,这是一种在富锂材料中观察到的高能量密度范式。LOR反应提供了超过4V相对于Li+/Li的显著氧化还原容量,但其起源和机制尚未完全理解,这限制了更优正极材料的合理设计。此外,阴离子氧化还原在充放电之间存在较大的电压滞后,并在循环过程中遭受严重的电压衰减,这些问题阻碍了它们的商业化。因此,研究稳定氧化晶格氧离子的机制,实现长期可逆的晶格氧氧化还原反应,对于开发下一代高能量密度二次电池至关重要。特别是在广泛使用的插层式正极材料中,除了过渡金属(TM)阳离子的氧化还原外,激活阴离子氧化还原反应也成为了提升电池性能的关键研究方向。
图文解读
图1:展示了由离子迁移引起的氧非键合态。图a和b分别展示了传统层状和丝带状过渡金属(TM)网络的示意图,图c展示了丝带TM网络中的氧配置和相应的投影态密度(pDOS),图d显示了[Li28Ni2][Li2Ni22Mn3Co3]O2结构中氧物种的百分比。    
图2:描述了在充放电过程中NCM811中动态的丝带状TM网络。图a展示了首次充放电曲线,图b和c分别沿着[1̄10]和[110]方向的高角环形暗场扫描透射电子显微镜(HAADF-STEM)图像,展示了放电3.6V时的样品状态。
图3:展示了通过电子束诱导的NCM811中TM网络的演变。连续的HAADF-STEM图像显示了TM和Li离子在电子束下的迁移。    
图4:展示了通过热驱动的LiNiO2中丝带状TM网络。图a展示了焊接在原位加热芯片上的LiNiO2二次粒子的截面,图b-d展示了在不同温度下的HAADF-STEM图像,图e展示了对应的环形亮场(ABF)STEM图像。
   
图5:探讨了由丝带状TM网络稳定的LOR。图a和b分别展示了丝带有序和Li-二聚体TM网络,图c展示了这两种配置的形成能和应变,图d展示了图2b中标记区域的平面应变映射,图e和f展示了原始和充电NCM811中O4和O5 2p轨道的投影态密度(pDOS)。
图6:展示了稳定TM网络的设计。图a展示了在不同Li富集度下有序和无序TM网络之间的能量差异,图b展示了在1/5、1/3、1/2和2/3 Li富集度下有序和无序(Li团簇)TM网络的示意图,图c总结了已合成的3d、4d和5d有序TM氧化物,图d展示了与Li富集度和TM网络组成的相图。
总结与展望
本研究发现,在层状正极材料中,过渡金属(TM)离子的迁移导致了氧配位环境的多样化,其中Li-O-Li构型激活了氧的非键合态,使氧能够参与电荷补偿。在电化学过程中,观察到TM迁移形成了有利于可逆LOR的丝带状TM网络,这一网络结构通过原位电子显微镜技术得到了进一步的证实。最后,研究者们通过计算有序TM网络的稳定性,并提出了t2g轨道占据规则,即空的、半满的或全满的t2g轨道有利于有序TM网络的形成。这一规则也得到了文献中报道的有序TM氧化物合成的支持。基于这一规则,可以选择掺杂元素来改良传统的层状正极材料,稳定循环过程中的有序TM网络,最终目标是提高LOR的可逆性。这项工作不仅阐明了化学计量层状正极材料中LOR的机制,而且为通过调节TM排序激活可逆LOR提供了可能性,为下一代高能量密度电极材料的结构范式设计提供了指导。
来源:清洁能源
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 47浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 51浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 49浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 22浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 60浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 76浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 42浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 168浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 35浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 170浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 184浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 62浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦