基于鸿蒙操作系统的单个按键长按、短按的实现

嵌入式从0到1 2020-11-22 00:00

长按、短按的应用

我们之前在下面网文中介绍过了ESP8266模块的配网:

Windows下AliOS Things环境搭建及ESP8266 固件下载

固件使用AliOS Things固件的ESP8266模块进行配网的时候,文中是这么操作的:

使用一个跳线,先把D5(GPIO14)接GND,再接3.3V,出现如下Log即进入配网模式:

这个过程其实就是模拟了一个按键长按过程。

长按、短按的原理

我们学习嵌入式要学习其原理,原理学会了,其他平台下相同功能的实现也就会了。

通过阅读AliOS Things 3.0的源码,其中按键状态判断的过程如下:

源文件:platform/mcu/esp8266/bsp/key.c

上述过程简单描述过程如下:

  1. 按键对应的GPIO中断函数中,开启定时器;

  2. 定时器响应函数中,循环判断此GPIO的状态。当按键仍为按下状态时,定时计数+1;如果按键变为了释放状态,则停止定时器,计算按键被按下状态总的持续时间;

  3. 根据时间长短进而判断出此次按键为长按还是短按,进而可以实现一个按键对应多个不同功能。

这种驱动方式跟下面按键驱动方式有明显的优势:

基于鸿蒙OS的按键驱动

此方法优点:天然去抖动,不用延时等待按键状态改变,程序运行效率大大提高。

鸿蒙系统实现单个按键的长按和短按

参考上面原理,我们实现一个鸿蒙系统下的按键长按和短按判断。

初始化GPIO中断

在入口函数SYS_RUN(KeyExampleEntry);中,将GPIO_5设置为下降沿触发中断:

hi_u32 ret = 0;
GpioInit();
IoSetFunc(WIFI_IOT_IO_NAME_GPIO_5, WIFI_IOT_IO_FUNC_GPIO_5_GPIO);
GpioSetDir(WIFI_IOT_GPIO_IDX_5, WIFI_IOT_GPIO_DIR_IN);
//IoSetPull(WIFI_IOT_IO_NAME_GPIO_5,WIFI_IOT_IO_PULL_UP);

if (ret != WIFI_IOT_SUCCESS) {
 printf("===== ERROR ======gpio -> GpioSetDir ret:%d\r\n", ret);
 return;
}
//注册下降沿触发函数
ret = GpioRegisterIsrFunc(WIFI_IOT_GPIO_IDX_5,WIFI_IOT_INT_TYPE_EDGE,WIFI_IOT_GPIO_EDGE_FALL_LEVEL_LOW, gpio5_isr_func, NULL);

if (ret != WIFI_IOT_SUCCESS) {
 printf("===== ERROR ======gpio -> hi_gpio_register_isr_function ret:%d\r\n", ret);
}

初始化定时器

在入口函数SYS_RUN(KeyExampleEntry);中创建定时器:

ret = hi_timer_create(&g_timer_handle);     
if (ret != HI_ERR_SUCCESS) 
{         
 printf("timer create fail\r\n");     
}     
 
printf("timer create success\r\n"); 

在GPIO_5的中断处理函数中,使用hi_timer_start()函数开启定时器。

/* gpio callback func */
void gpio5_isr_func(char *arg)
{
    (void)arg;
    //临时取消GPIO_5的中断响应
    GpioUnregisterIsrFunc(WIFI_IOT_GPIO_IDX_5);

    printf("----- gpio05 isr success -----\r\n");

    hi_u32 ret = 0;
    //启动定时器
    ret = hi_timer_start(g_timer_handle, HI_TIMER_TYPE_PERIOD, 10, app_demo_timer_handle, 0);     
    
    if (ret != HI_ERR_SUCCESS) 
    {
        printf("timer start fail\r\n");
    }     
    
    printf("timer start success\r\n");
}

定时器开始函数定义如下:

* timer_handle,定时器句柄。
* type,定时器类型。
* expire,定时器超时时间(单位:ms)。配置为0时,默认为10ms。
* timer_func,定时器回调函数。
* data,回调函数传参。
*
* 返回值0,代表操作成功,
* 其他代表失败, 具体定义详见:hi_errno.h。
*
* 依赖:hi_timer.h:文件用于描述定时器相关接口。
* 定时器停止使用 hi_timer_stop() 函数。
*/
hi_u32 hi_timer_start(hi_u32 timer_handle, hi_timer_type type, hi_u32 expire,
                      hi_timer_callback_f timer_func, hi_u32 data)
;

定时器回调函数

在定时器回调函数中,循环判断GPIO_5的状态,只要按键没有释放,就将计数器自加,每增加1,代表10ms,当按键释放之后,停止计时,最终根据按键按下持续的总时长来判断此次按键的长短。

static hi_void app_demo_timer_handle(hi_u32 data) 
{
    hi_unref_param(data);

    hi_u32 ret = 0;
    //定时器计数+1
    nCurrentTimerCount++;  
    //每一秒打印一次日志,方便调试
    if((nCurrentTimerCount % 100) == 0)
        printf("count = %d \r\n",nCurrentTimerCount);

    WifiIotGpioValue wigv;

    //获取GPIO_5的状态
    GpioGetInputVal(WIFI_IOT_IO_NAME_GPIO_5,&wigv);

    if (wigv == WIFI_IOT_GPIO_VALUE0)
    {
        //按键尚未释放
    }
    else
    {
        //停止定时器
        ret = hi_timer_stop(g_timer_handle);         
        
        if (ret != HI_ERR_SUCCESS) 
        {         
            printf("timer stop fail\r\n");     
        }
        else
        {
            printf("app demo timer stop , count = %d \r\n",nCurrentTimerCount); 
            //根据按键持续时间判断此次按键操作为长按还是短按
            if (nCurrentTimerCount > 600)
            {
                nCurrentTimerCount = 0;
                printf("long long press key \r\n");
            }
            else if (nCurrentTimerCount > 200)
            {
                nCurrentTimerCount = 0;
                printf("long press key \r\n");
            }
            else if (nCurrentTimerCount > 4)
            {
                nCurrentTimerCount = 0;
                printf("short press key \r\n");
            }
        }
        //恢复GPIO_5的中断响应
        ret = GpioRegisterIsrFunc(WIFI_IOT_GPIO_IDX_5,WIFI_IOT_INT_TYPE_EDGE,WIFI_IOT_GPIO_EDGE_FALL_LEVEL_LOW, gpio5_isr_func, NULL);
    }     
}

结果展示


由上面展示我们可以看出,已经实现了同一个按键三种不同状态的区分。

资料获取

公众号留言区置顶留言获取本文对应示例源码。

ps: 文章首发于电子发烧友。

欢迎关注

程序员小哈带你玩转嵌入式,微信搜索:嵌入式从0到1,更多干货等着你。


嵌入式从0到1 专注于嵌入式知识分享
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 83浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 137浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 132浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 99浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 78浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 127浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 79浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 87浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 71浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 177浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 120浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 132浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 128浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 158浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦