为什么拉普拉斯变换里面的衰减因子是e^st?

原创 云深之无迹 2024-11-10 19:32

建议是先看一遍这个文章-小张带你看看信号与系统三大变换(骂骂咧咧版)

然后再来读这篇,本来文章就回答一个问题,但是后面就又变成了拉普拉斯变换的学习笔记,不影响哈,早晚都得学。

初学的时候就在想,为什么是e^st这个形式,有没有别的?(现在也回答不好)

如果看不懂文章的可以看祖师爷的原文

其实最一开始的起因是连续时间傅里叶变换,而这些东西都是从周期到非周期的推广:

这是周期信号

通过把一个信号当成一个周期信号在周期任意大时的极限来看待。这是信号与系统的半壁江山的想法,也是从周期到非周期,走向泛化的想法。

我这里啰里啰唆是想提醒读者包括自己,这门学科公式繁复,靠背诵是不可取的,要深刻的理解推理过程,最好的教科书是重建理论构建之路。

这就是非周期的连续时间傅里叶变换

事实上,这个东西离拉普拉斯的变换已经很接近了。拉普拉斯变换可以看作是傅里叶变换的推广。傅里叶变换将一个函数分解成不同频率的正弦波的叠加。然而,傅里叶变换对函数的收敛性有一定要求,即函数必须满足一定的条件(如绝对可积)。然而,许多实际信号,如阶跃函数、斜坡函数等,并不满足这个条件。许多原本不满足绝对可积条件的函数在乘上这个因子后变得可积,从而保证拉普拉斯变换的积分收敛。

为了克服傅里叶变换的限制,我们引入一个衰减因子e^(-σt),其中σ是一个实数。这个衰减因子可以使一些增长过快的函数在乘上这个因子后变得可积。

衰减因子看作是一个随着时间逐渐减小的权重。对于那些增长过快的函数,随着时间的推移,其乘上衰减因子后的值会越来越小,最终使得积分收敛。

F(s) = ∫[0,∞] f(t) * e^(-st) dt
  • e^(-σt): 衰减因子,控制信号的衰减速率。

  • e^(jωt): 复指数信号,表示信号的频率成分。

复数s同时包含了信号的幅值和相位信息,可以统一表示时域信号和频域信号。

s = σ + jω
  • σ 是s的实部,代表信号的衰减或增长速率。

  • j 是虚数单位,j² = -1。

  • ω 是s的虚部,代表信号的频率。


等等!这里要讨论啦,我们说衰减一定是速度很快的停下来。

底数大于1的情况:

  • 自变量趋向正无穷: 指数函数的值会趋向于正无穷。

  • 自变量趋向负无穷: 指数函数的值会趋向于0。

  • 自变量趋向某个具体值: 指数函数的值会趋向于一个确定的常数。


底数在0到1之间的情况:

  • 自变量趋向正无穷: 指数函数的值会趋向于0。

  • 自变量趋向负无穷: 指数函数的值会趋向于正无穷。

  • 自变量趋向某个具体值: 指数函数的值会趋向于一个确定的常数。


我是感觉这样可以在数学上面说明,因为S就是一个复函数,也就是有具体的值,那么最后就可以趋向于一个确定的常数。

衰减项e^(-σt): 这里的s是一个复数,可以表示为s = σ + jω。实部σ决定了信号的衰减速率。当σ>0时,信号随时间指数衰减;当σ<0时,信号随时间指数增长;当σ=0时,信号幅值保持不变。这是上面我说的内容

振荡项e^(jωt): 虚部jω则引入了频率的概念。e^(jωt)表示一个频率为ω的复指数信号,它在复平面上绕原点旋转。

e^(-st) 这个函数将时域信号的衰减和振荡特性统一起来,映射到复频域

首先是数学性质优良:指数函数具有良好的微积分性质,便于进行微分和积分运算。因为信号与系统最重要的就是卷积了,求响应,里面不可避免的有卷积积分,积分我们不好积啊!自然界中许多现象都可以用指数函数来描述,例如放射性衰变、电路中的RC电路等。e^(-st) 的导数仍然是e^(-st) 的倍数,这使得微分方程的求解变得简单。

二是频域分析的需要: 通过乘以e^(-st)并积分,我们可以将时域信号分解成不同频率的成分,从而在频域进行分析。这个也好理解,对系统的分析就是把一个输入的信号分解成正交的简单信号然后在LTI系统下进行变换。e^(jωt) 表示一个复指数信号,它包含了信号的频率信息。

三系统的输入输出关系: 在线性时不变系统中,输入信号的拉普拉斯变换与系统的传递函数的乘积等于输出信号的拉普拉斯变换。这里说的是特征函数。

e^(-st) 的物理意义:

  1. 衰减因子: e^(-σt) 可以看作是一个衰减因子,它描述了信号随着时间衰减的快慢。

  2. 旋转因子: e^(jωt) 可以看作是一个旋转因子,它描述了信号的振荡特性。

  3. 复频域: s是一个复数,它包含了信号的幅度和频率信息。

今日封面

评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 80浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 66浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 61浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 54浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 53浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 48浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦