点击左上角“锂电联盟会长”,即可关注!
外的 6、12 和 16 mΩ 电阻。可以看出,初始短路电流相应地从 81 A 下降到 67 A。初始短路电流为 81 A 和 78 A 的 6 mΩ 和 12 mΩ 外壳在短路时分别在 2.4 秒和 3.0 秒起火。但是,当初始短路电流降至 67 A(在 16 mΩ 的情况下)时,不会起火。这表明存在一个短路电流阈值,约为 ~70A,以触发电池起火。转换为 C 倍率,该阈值相当于 2.6Ah 电池的 ~27C。触发火灾的阈值短路电流的存在表明,如果短路电阻足够大,比如软短路的情况,可能不起火,也不会冒烟。因此,在电池内短路的定量科学研究中必须精确控制短路电阻。否则内短路后果表现随机;先前未能报告和精确控制这一关键实验参数的实验结果也是随机的。另外,这里发现的起火阈值短路电流的技术意义是,全固态电池可以通过设计和制造具有较大内阻来避免起火,例如采用复合集流体。
a
b
图3. 短路电流的影响。a、 单层 ISC 后的电池电压、短路电流、短路电阻和内部温度。b, 短路电流主要由各种 AFB 电池和 LiB 电池中的短路电阻分别控制。
燃烧需要氧气,因此,电池起火通常源自层状氧化物正极。为了证实这一假设,两个 AFB,一个使用 NMC811 正极,另一个 LFP正极。图 4a 清楚地表明,NMC正极 的 AFB 会着火,而LFP正极的 AFB 既不起火也不冒烟。图 4b 进一步比较了四个 AFB 与 NMC正极充电到各种SOC。SOC 越高,短路过热时释放的氧气就越多。120% 和 100% SOC 情况在内部短路时大约同时(~2.6 秒)起火,而 75% SOC在 12 秒左右延迟形成烟雾,50% SOC既不起火也不冒烟。图 4 的结果证明了氧化剂在电池火灾形成中的深远重要性,指出氧与锂金属的分离将是抑制或消除火灾/烟雾的重要方向,以确保锂金属全固态电池的安全。
a
b
图4. 氧化剂对ISC 锂电池安全的影响。a, NMC 与 LFP 正极。 b,NMC 正极充电到不同的SOC。
结论
基于燃烧理论,我们通过考虑热输入、燃料和氧化剂来阐明锂电池起火。研究发现,无关何种电解质,所有含有锂金属的电池都有充分条件在 1-3 秒的时间内着火。如此短的火灾发生时间使得Pack层面上安全措施几乎不可能,我们必须在电池内部寻找可行的解决方案:包括化学、材料和内部结构。否则,锂金属全固态电池本质上是不安全的,无论是在着火的动能还是之后的大量热量释放角度。
电池起火存在一个短路电流阈值。因此,控制短路电阻至关重要。有意提高包括 全固态在内的锂金属电池的内阻,从而降低短路电流证明可以有效避免火灾和实现安全,但这样的措施将遏制全固态电池 实现快速充电和大功率放电的雄心。此外,通过使用PTC材料进行短路电流控制可能有效。最后,层状氧化物正极析氧及其进入锂金属负极在火灾/烟雾的形成中起主要作用; 因此,灭火/抑烟需要阻隔正极中释放的氧气与锂金属直接接触。
全固态电池着火的最常见化学反应是熔融锂燃烧:
4Li + O2 →2Li2O
ΔH=4.3x107 J/kg
在滥用条件下,图 5展现了全固态电池的四种着火可能性 :(a) 非100% 致密的固体隔膜含有开孔、裂纹和缺陷(图 5a),(b) 固体隔膜在钉刺过程中或机械冲击而破裂(图 5b),(c) 锂枝晶通过无机电解质隔膜(例如沿晶界)生长到达正极(图 5c), (d) 180oC 及以上的熔融锂被好几 MPa 的超高压缩压力从电芯边缘挤出或溅出,到达析氧的正极(图 5d)。
锂金属电池着火灾的时间极短,这是一个严重的问题,因为它使电池包层面的安全措施几乎徒劳无功。因此,解决安全问题应该是全固态电池的第一研发重点。
图5. 在全固态电池滥用条件下,锂金属与 正极析出氧气接触的示意图。a, O2 通过固体隔膜的孔隙、裂纹和缺陷扩散。b, O2 在钉刺中渗透到负极。c, 锂枝晶生长到正极 。d, 被电池夹紧压力挤压或溅出的锂液滴。
Reference:
S. Ge, T. Sasaki, N. Gupta, K. Qin, R.S. Longchamps, K. Aotani, Y. Aihara, C.Y. Wang, Quantification of Lithium Battery Fires in Internal Short Circuit, ACS Energy Lett. 2024, 9, 5747–5755.
https://pubs.acs.org/doi/full/10.1021/acsenergylett.4c02564
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试!
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编!
锂电池循环寿命研究汇总(附60份精品资料免费下载)