写多个线圈与写多个保持寄存器-RZMPU工业控制教程连载(35)

瑞萨MCU小百科 2024-11-05 12:04

10.5.11

(0x0F)写多个线圈

1. 功能说明

15功能码用于将连续的多个线圈或离散输出设置为ON/OFF状态,支持广播模式,在广播模式下,所有从站设备的同一地址的值将被统一修改。15功能码中,起始地址字段由2字节构成,取值范围为0x00000xFFFF:而寄存器数量字段由2字节构成,取值范用为0x00010x07B0。


2. 查询报文

查询报文中包含请求数据字段,用于定义ON或OFF状态。数据字段中为逻辑1的位对应ON;逻辑0的位对应OFF。其中,ON/OFF与数据字段的对应关系可参考前面的童节“01(0x01)读取线圈,离散量输出状态(Read Coil status/DOs)”中的内容举例说明,假设从站设备地址为5,需要设置线圈地址20~30的状态如下表所示。


线圈状态:


那么,写入的数据字段被划分为2字节,值分别为0xD1,对应于27~20的线圈,值0x05对应于30~28的线圈,注意细体会其中的高低位的对应关系。需要注意的是,在查询报文中,Modbus协议的起始地址为19(0x13),即比线圈起始地址20少1。如下表所示,其中字节数字段表示需要变更数据的字节总数。


功能码15查询报文示例:

字段

(Hex)

ASCII

模式字符型

RTU模式8位

(Hex)

帧头


_

“:”


_

从设备地址

0x05

“0”,“5”

0x05

功能码

0x0F

“0”,“F”

0x0F

起始地址

(高位)

0x00

“0”,“0”

0x00

起始地址

(低位)

0x13

“1”,“3”

0x13

寄存器数

(高位)

0x00

“0”,“0”

0x00

寄存器数

(低位)

0x0B

“0”,“B”

0x08

字节数

0x02

“0”,“2”

0x02

变更数据

(高位)

0xD1

“D”,“1”

0xD1

变更数据

(低位)

0x05

“0”,“5”

0x05

差错校验


_

LRC(2字符)

CRC(2字节)

帧尾


_

CR/LF


_


_

合计字节数

23

11


3. 响应报文

对于从设备,在正常情况下,响应报文包括功能码、起始地址以及写入的线圈数量,如下表所示。


功能码15响应报文示例:

字段

(Hex)

ASCII

模式字符型

RTU模式8位

(Hex)

帧头


_

“:”


_

从设备地址

0x05

“0”,“5”

0x05

功能码

0x0F

“0”,“F”

0x0F

起始地址

(高位)

0x00

“0”,“0”

0x00

起始地址

(低位)

0x13

“1”,“3”

0x13

寄存器数

(高位)

0x00

“0”,“0”

0x00

寄存器数

(低位)

0x0B

“0”,“B”

0x08

差错校验


_

LRC(2字符)

CRC(2字节)

帧尾


_

CR/LF


_


_

合计字节数

17

8


10.5.12

(0x10)写多个保持寄存器

1. 功能说明

16功能码用于设置或写入从设备保持寄存器的多个连续的地址块(1~123个寄存器),支持广播模式,在广播模式下,所有从站设备的同一地址的值将被统一修改。本功能码中,起始地址字段由2字节构成,取值范围为0x0000~0xFFFF;而寄存器数量字段由2字节构成,取值范围为0x0001~0x007B。


2. 查询报文

查询报文包含请求数据字段。数据字段保存需要写入的数值,各数据按每个寄存器2字节存放。举例说明,从站设备地址为5,需要将保持寄存器地址40020~40022设置为如下表所示的数值。


寄存器的设置:

寄存器地址

设定值

寄存器地址

设定值

40020

0X0155

40022

0x0157

40021

0x0156


对应于40020~40022的寄存器,注意仔细体会其中的高低位的对应关系。需要注意的是,在查询报文中,Modbus协议的起始地址为19(0x13),即比寄存器起始地址20少1。如下表所示,其中字节数字段表示需要变更数据的字节总数。


功能码16查询报文示例:

字段

(Hex)

ASCII

模式字符型

RTU模式8位

(Hex)

帧头


_

“:”


_

从设备地址

0x05

“0”,“5”

0x05

功能码

0x10

“0”,“F”

0x0F

起始地址

(高位)

0x00

“0”,“0”

0x00

起始地址

(低位)

0x13

“1”,“3”

0x13

寄存器数

(高位)

0x00

“0”,“0”

0x00

寄存器数

(低位)

0x03

“0”,“B”

0x08

字节数

0x06

“0”,“6”

0x06

变更数据1

(高位)

0x01

“0”,“1”

0x01

变更数据1

(低位)

0x55

“5”,“5”

0x56

变更数据2

(高位)

0x01

“0”,“1”

0x01

变更数据2

(低位)

0x56

“5”,“6”

0x56

变更数据3

(高位)

0x01

“0”,“1”

0x01

变更数据3

(低位)

0x57

“5”,“7”

0x57

差错校验


_

LRC(2字符)

CRC(2字节)

帧尾


_

CR/LF


_


_

合计字节数

31

15


3. 响应报文

对于从设备,在正常情况下,响应报文包括功能码、起始地址及写入的寄存器数量,如下表所示。


功能码16响应报文示例:

字段

(Hex)

ASCII

模式字符型

RTU模式8位

(Hex)

帧头


_

“:”


_

从设备地址

0x05

“0”,“5”

0x05

功能码

0x10

“1”,“0”

0x10

起始地址

(高位)

0x00

“0”,“0”

0x00

起始地址

(低位)

0x13

“1”,“3”

0x13

寄存器数

(高位)

0x00

“0”,“0”

0x00

寄存器数

(低位)

0x03

“0”,“3”

0x03

差错校验


_

LRC(2字符)

CRC(2字节)

帧尾


_

CR/LF


_


_

合计字节数

17

8


在实际开发过程中,功能码“16(0x10)写多个寄存器(Preset Multiple Registers)”通常用于方便用户写入多字节类型的数据。


例如,假设从站设备地址为5,需要向保持寄存器写入一个32位(4字节)的浮点数,那么此浮点数将占用2个寄存器地址。假设浮点数将存放在40001和40002寄存器中,设定值为1.235(即0x3F9E 147A)实际的查询和响应报文如下(其中标记部分为设定的浮点数值,假设字节序为AB-CD,参考第5.3.7章字节序和大小端的内容)。


查询报文:05 10 00 00 00 02 04 3F 9E 14 7A 05 86

响应报文:05 10 00 00 00 02 40 4C


对于64位(8字节)的双精度浮点数,同理将占用4个寄存器地址共8字节的空间。特别需要注意的是字节序及大小端的问题,前面讨论过多字节存在大小端问题,因此主站设备和从站设备必须保持一致的规则处理,约定Modbus传输中的数据字段的字节序,否则会因为大小端不一致而产生数据处理错误。


需要技术支持?

如您在使用瑞萨MCU/MPU产品中有任何问题,可识别下方二维码或复制网址到浏览器中打开,进入瑞萨技术论坛寻找答案或获取在线技术支持。

https://community-ja.renesas.com/zh/forums-groups/mcu-mpu/



未完待续


推荐阅读

Moubus功能码详解 - RZ MPU工业控制教程连载(30)


读取保持寄存器值 - RZ MPU工业控制教程连载(31)

写单个线圈与单个保持寄存器相关 - RZ MPU工业控制教程连载(32)

更多精彩,敬请关注


评论 (0)
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 95浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 178浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 222浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 227浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 153浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 232浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 240浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 168浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 101浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 217浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 155浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 184浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦