车用新能源动力电池系统PACK开发设计

线束中国 2024-11-01 10:04

动力电池系统是新能源电动汽车动力的来源,作为电动汽车的关键零部件,其设计的合理性和安全性对电动汽车起着至关重要的作用。文章基于某车企需求研发设计一款28 kWh的动力电池系统,主要从电池系统整体结构的排布与设计、电池电气系统的设计、电池热管理系统的设计等三个方面对该动力电池系统进行详细设计和分析。该设计通过结构上尺寸链的分析校核是合理的,以及对其热管理系统进行仿真分析,从而来验证其性能的可行性。此次设计为后续进一步对该电池系统进行优化和试验验证提供了一定的理论基础,也为电池系统开发工作者提供一定的参考价值。 



01
 电池系统结构设计

动力电池包是电动汽车的关键核心零部件,目前大多数电池包的固定方式采用箱体装载式并固定于汽车底盘。动力电池系统主要由电池组件、电池箱体组件、电池管理系统(Battery Management  System, BMS)、高压电气系统和热管理系统等组成。动力电池系统的整体布局在满足客户设计需求的前提下,电池内部空间需排布合理,并且保障动力的稳定性以及电池的安全性。各排布之间确保零件之间不会相互干扰,且保证电池系统在合理的工作范围内工作,且确保电池系统在合理的温度范围内工作,也就是确保电池的热管理系统正常工作,均匀散热,确保电池的一致性,提高电池的利用率,同时延长电池的使用寿命。以下对电池系统整体排布与设计进行概述。

根据上述动力电池系统的特点和特性,以及主机厂的设计要求,本文设计的动力电池系统主要由电池箱体、箱盖、电池模组、高压铜排、液冷板、高压插件、电池切断单元(Battery Disconnect Unit, BDU)、BMS 主机和从机、烟雾传感器以及高低压接插件等组件组成。电池各部件的初步选定为:采用方壳电芯进行设计,电池模组选用1P34S×3 成组方式,系统额定容量为87 Ah,额定电压为326 V,标称电量为28.39 kWh,电压范围为255~372 V,可用的电池荷电状态(State Of Charge, SOC)范围为0~100%,电池系统的能量密度为120.8 Wh/kg。电池的防护等级根据国家的相关标准采用IP67 的防护等级。目前热管理方式主要有液冷和风冷两种方式,根据电池结构特点和客户需求,本文采用液冷板液冷散热和侧面正温度系数热敏电阻(Positive Temperature Coefficient, PTC)加热的热管理方式。BMS 排布选择一主两从的结构形式。整体的PACK 尺寸设计为1 230 mm×1 085 mm×130 mm,整体PACK 的重量应为235 kg。电池包的三维整体布置如图1 所示。

图1 电池包三维整体布置图

该电池PACK 系统中电池模组通过螺栓固定在电池箱体上,箱体与箱盖最终通过螺栓进行密封。模组与模组之间通过串联铜排进行连接,电池系统的前端留有一个矩形空间,专门布置2 个高压箱BDU、BMS 主机和BMS 从机、烟雾传感器以及用于引出总正和总负的高压铜排。箱体前端外部安装有高低压接插件用于充放电以及与整车通讯连接。为了散热性能好,在电池模组底部设计有液冷板用于散热冷却,模组侧边设计有PTC 加热,两者相结合保证电池系统在合理的温度范围内工作,提高电池系统的使用寿命。该电池系统结构设计紧凑、集成度高,且便于装配和维修。

1.1 箱盖设计

箱盖采用预浸料模压(Prepreg Compression Molding, PCM)材质。防腐等级根据国家标准GB/T10125-2012中对盐雾实验的要求,中性盐雾≥720 h,阻燃等级应达到UL94-V0。加工工艺采用PCM,开模周期要求为45天。箱盖的设计尺寸为1 215 mm×1 059 mm×32.65 mm,主体厚1.2 mm,法兰为3.0 mm,箱盖整体的质量≤4 kg,箱盖安装孔需增加C 型衬套,衬套可以避免扭矩衰减,有利于保护PCM 材料本体。箱盖设计图如图2 所示。

图2 箱盖设计图

1.2 箱体设计

箱体由多个零部件组成,边框型材采用Al6061-T6,插件面板采用铸铝AlSi10MnMg,底护采用0.8 mm 的B340LA/590DP。防腐等级根据国家标准GB/T 10125-2012 中对盐雾的实验要求,中性盐雾≥720 h,阻燃等级应达到UL94-V0。箱体的加工工艺采用液冷一体化设计,框架采用熔焊焊接,液冷板与箱体框架采用流钻螺钉拧紧(Flow Drill Screw, FDS)工艺,同时使用密封胶辅助密封,冲压底护板与箱体及液冷板用螺栓进行连接。箱体的设计尺寸为1 355 mm×1 145 mm×135 mm,质量大约36 kg。其箱体底护板喷涂0.8 mm聚氯乙烯(Polyvinyl Chloride, PVC),箱体设计如图3 所示。

图3 箱体设计图



02
 电池电气系统设计

动力电池的电气系统可保证整个电池包能够安全运行,所以电气设计是动力电池系统设计的关键部分。电动汽车电池包的电气部分主要有电池模组、BMS、电气部件(继电器、接触器、保险、传感器、预充电阻等)、高低压线束和连接器。

电气系统设计实现功能为基础,以安全为第一,可靠性为主,输出可靠高效的电能。在设计过程中,高压电气负载匹配是一个重要的设计方案,包括接触器、高压线缆或铜巴、汇流排、熔断器、高压接插件等相互连接,将动力电池系统的电能输送到车辆高压系统。还需要考虑预充电阻和预充时间的确定,以避免高压上电时产生瞬间大电流冲击高压电气部件。

根据本文整体系统排布和结构方面的设计对电气系统进行整体布局,其中电气系统设计主要有高低压系统设计、各类连接线束设计、各类低压接插件设计。本文设计的动力电池电气系统的整体布局如图4 所示。

图4 电气系统整体布局图



03
 热管理系统设计

动力电池的热管理系统对动力电池的性能、寿命、安全和储能大小的变化等均有影响。要保证动力电池系统在合理的温度范围内工作,防止电池系统出现热失控,导致电池寿命缩短和损坏,所以为了防止电池过热,保障电池系统安全运行,对于动力电池的热管理系统的设计和开发至关重要。

热管理系统主要是对冷却系统温度进行检测与控制。动力电池系统一般分为液冷和风冷,风冷成本低,能够散去有害气体,不存在漏液等复杂的问题。但是在动力电池包这种结构紧凑且需迅速冷却的设备上,风冷并不适用;相比液冷,与整个电池包热交互的速率更快,散热更可靠的原因,同时电池模组采用了三块1P34S的成组方式,所以受热不均匀也成了电池是否能安全使用的一大重要问题,因此,本文设计的电池热管理方式为液冷一体化加侧面PTC 加热的组合方式。

具体方案为冷却方式采用一体化冷板液冷、加热方式侧面PTC 加热方案、导热界面模组与冷板之间填充2.5 mm 导热胶(模组带兜边)、保温和支撑设计底护板与一体化冷板间采用条状硅胶泡棉作支撑(压缩后2.5 mm)。液冷板布置在电池箱体与电池模组之间,为电池模组底部提供散热,并在电池模组的侧面布置PTC 进行加热。采用该种底部液冷板加侧面PTC 加热的组合方式,可很好地对电池系统进行热管理,其热管理整体方案图和热管理系统图如图5 和图6 所示。

图5 整体方案图

图6 热管理系统示意图

3.1 液冷板设计

针对冷板进行关键尺寸及流道设计。冷板的材料选择:上板选择铝锰合金并进行镀膜处理(AL3003Mod),下板选择铝锰合金(AL3003)。冷板的板厚设计为上板1.2 mm,下板1.0 mm,水嘴内径设计为16 mm。冷板的总体尺寸为1 206 mm×1 050 mm× 6.2 mm。液冷板进出水口直接接整车端,取消管路设计,在液冷板总进总出处安装固定防护底座,液冷板四周固定,且与箱体边框的固定采用FDS 流钻螺钉固定。液冷板的设计方案如图7 所示。

图7 液冷板设计方案

3.2 PTC 设计

在模组的侧面固定L型的PTC 加热板,其两头通过螺栓紧固在模组端板上与模组集成在一起,集成后作为模组侧板,通过加热板上的支架将模组固定在箱体支撑梁上。该PTC 设计的结构尺寸为935 mm×97 mm×1.5 mm。

该PTC 在设计时采用了绝缘设计:在PTC 加热板表面贴绝缘膜,防止加热板铝外壳与电芯接触。导热设计采用0.5 mm 导热结构胶,导热系数1.2 W/m.K,均匀铺在绝缘膜表面。线路设计单独采用一根主控线束将6个PTC加热板并联在一起,加热板采用快插插件与线束连接,PTC 的三维设计方案见图8。

图8 PTC 三维设计方案



04
 动力电池系统尺寸链分析

针对以上电池系统的结构设计,需通过尺寸链分析来判定其设计的结构尺寸是否合理,避免出现干涉的现象,特别是Z 向(即电池包的厚度方向)。由于Z 向空间较小,且布置的零部件较多,要保证设计的零部件都能合理地布置,下面将具体对Z 向进行尺寸链分析。

在Z 向尺寸链计算中,通过测量可得电池包Z向总尺寸为130 mm,具体电池包Z 向各尺寸间隙名称和明细表如表1 和图9 所示。图9 电池包Z 向尺寸链示意图如图11 所示,选取Z 方向间隙最小区域进行尺寸链校核。


上偏差:Es=Es(A)+Es(B)+Es(C)+Es(D)+Es(E)+Es(F)+Es(G)+Es(H)+Es(I)=4.7 mm;

下偏差:EI=EI(A)+EI(B)+EI(C)+EI(D)+EI(E)+EI(F)+EI(G)+EI(H)+EI(I)=-4.7 mm。

经过上述分析和计算,可得出该电池系统的上、下偏差分别为4.7 mm 和-4.7 mm,满足电池结构偏差设计要求±5 mm 的偏差范围,可验证该计算方向的设计间隙符合要求。



05
 动力电池热管理系统仿真分析

动力电池热管理系统作为动力电池的关键零部件,其性能的好坏对动力电池及车辆的使用寿命和安全性等有着重要的影响,特别是针对极端恶劣天气,电池系统能否有效实现低温加热,确保汽车安全稳定行驶,因此,设计一款具有良好热管理系统的动力电池尤为重要。所以通常需要对电池热管理系统进行仿真分析,来判断系统内部压降和低温加热性能是否满足设计要求。

5.1 系统压降仿真分析

为保证该动力电池系统在运行过程中始终保持在合适的温度范围内,需对该电池热管理系统进行仿真分析,以分析该液冷系统内部压降和低温加热工况,验证设计的合理性。

本文将液冷板的进口端面设置为液体流量入口,出口端面设置为压力出口,大小为0 Pa。其工况为以进口20 ℃冷却液,流体介质为体积比为50%的水和乙醇的混合液,进口流量10 L/min,密度1 040 kg/m3,动力粘度1.65 mPa・s 来分析液冷板内部系统压降,要求系统压降≤25 kPa,系统内部压降仿真分析曲线图如图10 所示,其对应的液体速度云图如图11 所示。

图10 系统内部压降曲线图

图11 系统内部流体速度云图

根据仿真结果可知,液冷板内壁面最大压应力存在部位,即入口部位。液冷板内壁面最大压应力为21.413 kPa,小于设计要求的判定标准25 kPa,说明系统压降满足设计要求。从系统内部流体速度云图可以看出,系统内部液体流速为0.8 m/s,满足整车厂对电池热管理系统流速在0.1~1 m/s区间的设计要求,仿真结果可验证该系统满足设计要求。

5.2 低温加热仿真分析

电池系统在低温环境下工作性能较差,需要对电池热管理系统的低温加热工况进行仿真分析。本文采用的是87 Ah 的LFP 型号的方壳电芯,其分析工况为假设周围环境及电池系统初始温度为-20 ℃,开启PTC 加热,当电芯最低温度Tmin=0 ℃时停止,PTC 功率为单片550 W。设计目标为低温世界轻型汽车测试循环工况,电池最低温由-20 ℃加热至0 ℃,时间≤35 min,温差≤8 ℃。在每个大模组上分布3 个温度监控点,3 个模组共分布9 个温度监控点。经仿真分析后电池温度仿真云图和电池监控点温度曲线分别如图12和图13所示。

图12 电池温度仿真云图

图13 电池监控点温度曲线图

图13 表明,在此工况下,电池由-20 ℃加热至0 ℃,低温加热工况结束后,模组的最高温度为30.3 ℃,小于目标值38 ℃。温差2.7 ℃≤8 ℃,仿真结果表明,电池系统的低温加热性能指标均满足设计要求。



06
 结    论

本文设计了一款车用新能源动力电池系统,分别从该动力电池系统的结构进行了设计(包括系统整体方案设计、箱体设计和箱盖设计),又对电池的电气系统以及对电池的热管理系统进行了设计,并对该电池在结构上的尺寸链进行了分析和校核,以及对该电池系统的热管理性能进行了仿真分析,包括分析其系统压降以及低温加热工况,具体得到以下几点结论:

1)通过对电池系统的结构设计进行分析,选取Z 向间隙最小区域进行尺寸链校核,结果表明该电池系统的上下偏差分别为4.7 mm和-4.7 mm,满足电池结构偏差设计要求±5 mm 的偏差范围,可验证该系统结构在计算方向的设计间隙符合要求,验证了结构设计的可行性。

2)通过对电池热管理系统中的系统压降工况进行仿真分析,结果表明液冷板内壁面最大压应力存在部位,即入口部位。液冷板内壁面最大压应力为21.413 kPa,小于设计要求的判定标准25 kPa,说明系统压降满足设计要求;系统内部液体流速为0.8 m/s,满足整车厂对电池热管理系统流速在0.1~1 m/s 区间的设计要求;仿真结果可验证该系统满足设计要求。

3)通过对电池热管理系统中的低温加热工况进行仿真分析,电池由-20 ℃加热至0 ℃,低温加热工况结束后,模组的最高温度为30.3 ℃小于目标值 38 ℃。温差 2.7 ℃≤8 ℃,仿真结果表明电池系统的低温加热性能指标均满足设计要求。


品牌推广 | 业务合作 | 原创投稿 | 转载开白

请在公众号后台回复  合作

来源:《汽车实用技术》,2024年.03期,作者:

宋春雷,严莹莹,刘 浩。本公众号仅为知识交流,不做商业用途。



 浙江希卡姆复合材料股份有限公司:专业定制各种连接器专用改性工程塑料: PA12铜排软连接挤出料、PA66/PBT无卤增强阻燃连接器材料,可定制新能源汽车专用RAL2003橙色。汽车保险丝盒专用PA/PPE合金材料等。手机: 18357312999

 专业回收呆滞库存!线束!汽车导线,继电器!保险丝!胶带!进口连接器!价格高,有需要处理的联系,中介丰厚茶水,电话13722953319景总


 扬州立特依尔科技有限公司:定制设计交流充电枪收卷线装置、各类充电桩枪用轻量化线缆,确保品质的同时为您降低采购成本。电话:17368921488范经理

评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 23浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 162浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 138浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 38浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 143浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 175浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 32浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 164浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 38浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 39浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 165浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦