三点式LC正弦波振荡器电路详解

电子工程世界 2024-11-01 08:01

▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!


最近突然对正弦波振荡器来了兴趣,但是看到三点式振荡器之后疑问就来了,主要是其中对谐振条件:X1+X2+X3=0的解释,查了好多资料都没有详细的解释,貌似都是把这个条件当做已知来使用,至于它怎么来的则没有好一些的解释。还有三点式振荡器的选频网络和反馈的接法,越看越头晕。在经过了几天的搬砖之后终于有了结果,这里写一下我的见解,如有错误之处欢迎指正。


正弦波振荡器原理



如图所示,假设放大器在 U的作用下能稳定的输出正弦波,当把开关S切换到2时,有

所以得到

A F = 1 

写得再具体点就是

A(ω)F(ω)=1

即整个系统是关于ω 的函数,当ω =ω 0 时系统稳定。


频率稳定条件



前面讨论的平衡条件包含两个方面,一个是系统(包括放大器和反馈网络)的总增益为1,另一个是整个系统的相角为0(即相位移动为2nπ)。

频率稳定过程

如图,当震荡频率等于 f时反馈回路的增益最大,且移相为0,即每次反馈后的电压Uf与原输入电压 U同相。并有

由于正弦电压的角频率是瞬时相位对时间的导数值,所以当电路受到外界干扰导致ω>ω时,反馈回路的移相为负值,阻止了电压的超前趋势,反过来当 ω<ω0 时也是相同的道理,由此频率被稳定在ω0

振幅稳定条件相对好理解一些,如图,当输出电压升高,电路增益减小,结果就是输出电压回落;当输出电压减小,电路增益增加,结果是电压回升。总结果就是输出电压稳定在V0


起振条件



初始时刻有∣AF∣>1,电路受到外界干扰,外界的干扰通常是频带很宽幅度很小的噪声,但由于此时电路增益较大,输出电压不断增大,当输出电压达到 V时便稳定下来。

讨论完正弦波振荡器原理之后我们讨论下LC反馈网络

这里我们研究谐振电路的目的在于找出三点振荡器 X1 + X2 + X3 = 0这个条件的来源

谐振的定义:当电路在某个频率下成纯电阻性,即电压和电流之间的相位差为0

首先是LC串联谐振,电路图如下

有X = Xc + Xl

按照谐振的定义,自然有X = 0,即 Xc + Xl = 0,电路在谐振时电阻为0。

然后是并联谐振

所以得到

当电路发生谐振时电导G = 0,即 Xc + Xl = 0,此时电路的电阻近乎无穷大。

我们看到无论是串联谐振还是并联谐振,均有 Xc + Xl = 0;我们离目标非常近了,下面我们就去看看具体的三点式震荡电路。


三点式振荡器的反馈



刚看课本上给出的电容式三点式振荡电路图时非常困惑不知道它为什么要这样接,我甚至看不出反馈回路在哪。在看了许多资料和电路图的变形之后,终于找到了一个满意的。

这里我没有画运算放大器的其他部分,只画了谐振回路和反馈回路。

在我看的资料上是这样描述的:信号电流被馈如到并联的LC电路,在此电路中,两个电容器构成了一个分压器网络,反馈到放大器的电压取自分压网络

是不是感觉突然明白了什么,哈哈哈。同样的,电感三点式振荡器的反馈电压来自于电感构成的分压电路。其实还差一点点,我们接着分析。


三点式振荡器谐振条件的推导



其实到这里,我们要的结论已经呼之欲出了。

我们来看一个电容三点式振荡器的电路图

由前面谐振电路的推导,我们知道 Xc + Xl = 0,而三点式震荡电路的谐振条件是

Xc3 + Xc4 + X= 0

这里的话其实很简单,就是 Xc = Xc3 + Xc4 两个电容串联,总的阻抗就是两个电容阻抗之和。至此,振荡平衡条件的由来我们已经搞清楚了,以后就能放心地使用它了。

等等!

有点不对,给出的电容分压反馈接法和三点式振荡器的接法不一样!

还记得刚开始讨论的正弦电路的平衡条件吗

AF=1

要求系统的相位偏移为0。

而上述的电容分压电路,如果从两个电容之间取出

可以看到谐振时反馈电压和输入电压是同相的

而下面这个电路用的是共射极放大器,输入和输出反向,即相位差为π

如果按照之前的方法接入反馈电压的话总的相位差就不为2nπ,而是π,就不满足平衡条件,所以把地接到两个电容之间,使得原来的反馈电压变为地,从原来的地引出反馈电压,这样电路总的移相就是0。

以上就是我学习三点式震荡电路的心得,如果有错误或者描述不恰当之处,欢迎提出意见和建议。

来源:头条号老马识途单片机


· END ·
欢迎将我们设为“星标”,这样才能第一时间收到推送消息。
扫码关注:汽车开发圈,回复“Auto

免费领Autosar入门与实践资料包!


扫码添加小助手回复“进群”

和电子工程师们面对面交流经验


电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 2层PCB设计时候回路的寄生电感计算方式。由两个平面构成电流路径的回路电感,取决于每个平面路径的局部自感和它们之间的局部互感。平面越宽,电流分布就越扩散开,平面的局部自感就越小,从而回路电感也就越小。平面越长,局部自感就越大,从而回路电感也就越大。平面间距越小,平面之间的互感就越大,从而回路电感也就越小。当该区域为正方形,即长度等于宽度时,无论边长是多少,长和宽之比始终等于1。令人惊奇的是,一对平面上的边长为100mil的正方形区域和边长为1in的正方形区域的回路电感相同。平面对上的任一正方形区
    tao180539_524066311 2025-01-02 13:51 46浏览
  •  在这个日新月异的科技时代,智能家居正以前所未有的速度融入我们的日常生活,从智能灯光到温控系统,从安防监控到语音助手,每一处细节都透露着科技的温度与智慧。而在这场智能化浪潮中,一个看似不起眼却至关重要的组件——晶体管光耦,正扮演着连接物理世界与数字世界的隐形桥梁角色,默默推动着智能家居行业的发展与革新。 晶体管光耦——智能家居的“神经递质”晶体管光耦,作为一种能够将电信号转换为光信号,再通过光信号控制另一侧电路开关的电子元器件,其独特的工作原理使得它在隔离传输、抗干扰及保护电
    晶台光耦 2025-01-02 16:19 67浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 101浏览
  • 起源与诞生:AI 技术的起源可以追溯到 20 世纪 40 年代,随着计算机技术的兴起,科学家们开始思考如何让机器具备类似人类的智能。1950 年,英国数学家艾伦・图灵提出了著名的 “图灵测试”,为 AI 技术的发展奠定了理论基础。1956 年,美国达特茅斯学院举行了一次人工智能研讨会,标志着 AI 作为一门独立学科的诞生。符号主义阶段(20 世纪 50 年代 - 70 年代):研究人员主要关注如何使用符号逻辑和推理规则来模拟人类思维,试图通过构建复杂的逻辑系统来解决各种问题。然而,由于这种方法的
    Jeffreyzhang123 2025-01-02 15:15 86浏览
  • 早期概念与探索阶段(19 世纪以前):在古代,人类就对自动机械充满了想象,如古希腊时期的希罗发明的自动门、水钟等自动装置,中国古代的指南车、木牛流马等,虽然这些装置不能称之为真正的机器人,但为后来机器人的发展奠定了思想基础。从概念走向实践阶段(19 世纪~20 世纪初):随着工业革命的到来,自动机概念开始与实际机械设计结合,出现了具有实际功能的自动机械,例如雅卡尔提花机等,可通过穿孔卡片控制编织图案,为后续可编程控制的机器人发展提供了灵感。现代机器人产业萌芽期(1920 年代~1950 年代):
    Jeffreyzhang123 2025-01-02 14:53 83浏览
  • 在科技飞速发展的今天,5G 通信技术无疑是最耀眼的明星之一。它如同一场数字革命的风暴,以其前所未有的速度、极低的延迟和强大的连接能力,为我们的生活、经济和社会带来了翻天覆地的变化,开启了一个万物互联的崭新时代。5G 技术的卓越特性5G,即第五代移动通信技术,相比其前辈们,有着诸多令人瞩目的特性。首先是超高速率。5G 网络的理论峰值下载速度可达 10Gbps,这意味着下载一部高清电影只需短短几秒钟,而 4G 网络可能需要几分钟甚至更长时间。这种高速率让高清视频流、云游戏等对带宽要求极高的应用变得流
    Jeffreyzhang123 2025-01-02 14:18 60浏览
  • 常见通信标准无线通信标准蜂窝移动通信标准:如 2G(GSM)、3G(WCDMA、CDMA2000、TD - SCDMA)、4G(LTE)以及 5G 等。以 5G 为例,其具有高速率、低时延、大容量等特点,为智能交通、工业互联网和物联网等领域提供支持。无线局域网标准:主要是 IEEE802.11 标准,也就是我们常说的 Wi - Fi。例如 IEEE802.11ac 和 IEEE802.11ax(Wi-Fi 6)等标准,不断提升无线局域网的传输速度和稳定性。短距离无线通信标准:包括蓝牙(Bluet
    Jeffreyzhang123 2025-01-02 14:33 49浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 94浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 105浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 91浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 99浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦