车规模块系列(十一):三电平拓扑模块

原创 功率半导体那些事儿 2024-10-31 07:15

花开不并百花丛,独立疏篱趣未穷。宁可枝头抱香死,何曾吹落北风中。

秋意渐浓,又是好久不见!骤降的天气似乎也掩盖不了半导体圈的热情,虽然市场有点模糊的萧条,但这并不影响我们为了迎接春天的激情。

PART
前言

之前我们聊过好多的车规模块,其中用量最广,持续最久,最受青睐的应该当属英飞凌HPD封装了,前面我们也说了合适(性价比)才是当下的主旋律。但不断发展迭代的趋势一直都在,创新从不缺乏,但实际应用并没有那么多。

从去年Tesla的减少75% SiC用量的方案开始,当然现在来看这个方案大概率是Si+SiC混合并联(但截至目前,据我了解Tesla还没有推出最终的产品,个人猜测也许它不会面世),国内也有很多家已经开始设计这个方案,有基于TPAK的,也有基于HPD的,正如最近提到汇川应用英飞凌混合HPD的电控。到近期很多在研的还有三电平拓扑,PCB嵌入式等等。这些相对于汽车主驱而言相对“新鲜”的想法,到最后的量产其实还有一段时间。

混合并联和PCB嵌入式的方案,我们前面都有简单地聊过,

Tesla:减少75%的SiC用量!会是它吗?

车规模块系列(九):PCB嵌入式功率模块

今天我们来聊聊三电平拓扑。(写到这儿,想起前和领导在Tesla那篇发布的一大早电话讨论的场景,它问我为什么不会是三电平,其实当时也没有否定这个猜想,毕竟三电平的优势是有的,只不过它从两电平变成了三电平,多久它才会映入汽车领域,现在看来也就一年多的时间。)

今天的参考是来自前东家在今年PCIM上的分享,基于emPack封装的三电平方案。

PART

三电平NPC

Netural Point Clamped

三电平拓扑,想必常在工业的朋友可能再熟悉不过了,现在风电、光伏和储能上基本上都是三电平拓扑,除了引入碳化硅,出于成本的考虑返回到两电平拓扑。三电平常见的有T型三电平和I型三电平,两者拓扑如下:

可以看出相对于两电平,三电平多了一个中性点,即从两电平的DC+/DC-到三电平的DC+/N/DC-,中性点的增加使得其电压状态也增加了一个,也就是为什么叫三电平的原因。

通过引入第三个电压电平,输出电压的波形近似得更接近期望的正弦波形,并且可以降低电流THD。

两电平2L→三电平3L:

  • 3L的THD能够降低,也就是相同THD的情况下,3L的开关频率可以做得更高;

  • 开关频率的提高,能够降低无源器件的尺寸和成本,从而在一定意义上也弥补了3L开关数量(相应的驱动数量和控制复杂度)增加带来的成本增加;

  • 3L的各器件的耐压需求有的只需要两电平的一半,T型的横管和I型的竖管;

  • 3L对于提升效率,功率密度和改善EMC是有好处的,同时由于存在高频/低频管而使Si和SiC混合拓扑存在可能。

PART
3-Level对主驱的优势

除了电机控制器的损耗以外,电机的损耗也是效率需要考虑的部分,这些损失主要包括机械损失、铜损失(I^2R损失)、铁芯损失(包括THD引起的损失)。铁芯损耗主要和其磁性能有关,可分为两大类,即磁滞损失和涡流损失。

磁滞损耗

是由于交流电(AC)通过电机绕组时,铁芯的反复磁化和退磁化的结果。铁芯具有一定的保持性,这意味着即使在磁场逆转后,它仍能保持一定的磁化强度。随着磁化强度随交流电方向的不断变化,由于代表能量损失的磁滞回线,能量以热量的形式损失。

其中kh为铁磁材料的磁滞系数,f为以赫兹为单位的电源频率,Bmax为Wb/m^2的最大磁通密度,铁磁材料的体积以m^3为单位。

涡流损耗

由于磁场的变化,铁芯内感应电流的循环导致了涡流损失。铁芯是一种良好的导体,会经历涡流,以热的形式产生电阻损失。这些电流可以通过层压铁芯,与层压层之间的绝缘材料来最小化,以减少涡流的闭环路径。

其中Ke为涡流常数,Bmax为最大通量密度,f为包括谐波在内的感应电压的频率,V为材料的体积。

下面是基于2电平到5电平的铁芯涡流损耗和调制度的关系,可见,由于谐波的减小,给涡流损耗带来了较大的降低。

PART
基于eMPack封装三电平

之前有一篇也专门聊过eMPack这个性能优异的封装,但似乎不太适合目前国内的市场。

车规模块系列(六):赛米控丹佛斯eMPack

上面我们提到了I型和T型三电平,从拓扑上看,T型的器件数量要少于I型,即T型的芯片布局相应会较小。在eMPack单相的封装尺寸不变的条件下,T型三电平的芯片布局更容易实现。下图是2L和T型3L的示意图。

可见,三电平多出了中性点N,所以直流侧的功率段子进行了变化。

另外,选择T型还有一个原因,就是T型只有短路径换流回路,而I型则有长换流回路和短换流回路,T型在电压尖峰上有着些许优势,这也是目前来看,T型更合适的原因。同时,汽车电池电压相对于风光储而言,还不算高,T型够用。

PART
总结

三电平相对于两电平在实际表现是否真的会带来较高的性价比收益,这个可能也是目前大于处于样机设计阶段想要通过实测对比来验证的内容。

同时采用那种封装,以及芯片布局等也需要考量很多,但对于有着风光储行业应用的半导体厂家来说,积累的经验可以更好地支撑其设计出一款好的三电平车规模块。

今天的内容希望你们能够喜欢!

END

Power semiconductors

关注微信号,让我们由浅入深慢慢丰富功率半导体那些事儿!

点分享

点收藏

点在看

点点赞

功率半导体那些事儿 从易到难,慢慢地支撑起整个半导体的框架,一个从零开始学习功率半导体的地方,我们可以一起谈谈功率半导体的那些事儿。
评论
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 64浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 62浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 65浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦