视频讲解:元器件测试仪中的“一键开关机电路”

原创 电路啊 2024-10-30 12:16

点击观看视频

【文字稿如下】

买了一个元器件测试仪(又叫晶体管测试仪),型号GM328A:

使用9V电池供电:

电路板的背面:

该元器件测试仪上用到一个“一键开关机电路”(又叫“单按键开关机电路”),简单实用,可以做到关机功耗为0,这是原理图:

原理图和实物的对应关系:

注:原理图中的MCU主控芯片U1,只画出了和“一键开关机电路”相关的部分,其他不相关的部分没有画,比如U1的晶振电路就没有画。

后面来分析这个电路。

一、元器件测试仪的功能介绍

了解这个元器件测试仪的功能,可以帮助我们理解“一键开关机电路”在它上面的应用。下面用几个例子简单演示它的功能。

1、测量三极管。三极管的引脚及参数非常直观:

2、测量晶闸管。这里是单向晶闸管MCR100-6:

3、测量二极管。这里的具体型号为1N4007,屏幕中非常直观地显示出正向压降Uf、结电容C、反向电流Ir:

4、测量电容。这里是在测量CBB电容:

包括且不限于以上的功能,小几十块钱就可以包邮到家,还是蛮不错的。

这个产品只用一个按键就实现了:

1、开机。在关机状态下,短按一下按键就开机:

2、切换菜单。在开机状态下,短按一下按键则切换菜单:

3、关机。在开机状态下,切换到“Switch Off”菜单后,长按按键则关机:

二、“一键开关机电路”的电路原理

1、开机过程。

①、在关机状态下,电路各点的电压如下:(均为实测值)

此时电池电压Vbat = 9.04V,三极管Q1、Q2、Q3都是不导通的,整机功耗为0。

②、在关机状态下,按下按键SW1时,产生了以下回路:

③、此时三极管Q1的Vbe = 7.73V - 8.53V = -0.80V,所以三极管Q1饱和导通,稳压芯片U6将电池电压稳压到4.99V,输出给主控芯片U1:

④、主控芯片U1上电后,GPIO-Out引脚马上输出高电平,打开三极管Q2:

⑤、三极管Q2打开后饱和导通,此时按键SW1可以松开,完成上电开机的全过程:

2、关机过程。

①、在开机状态下,松开按键时,主控芯片的GPIO-In引脚为高电平4.83V:

②、按下按键时:

③、因为三极管Q3饱和导通,主控芯片U1的GPIO-In被拉到低电平0V:

④、主控芯片U1检测到按键被按下,GPIO-Out引脚输出低电平0V:

⑤、当按键SW1松开后,系统断电关机,完成关机的全过程:

至此,一键开关机的电路原理分析完毕。

可以看到在关机状态下,所有负载都断开了,电池不对外供电,所以关机功耗为0,或者说几乎为0。

说是“几乎”,是因为三极管可能存在漏电流,其实可以忽略不计。

三、三极管开关电路分析

电路中用了三个三极管,分别是Q1、Q2和Q3,有NPN三极管,也有PNP三极管,在这个案例电路中,都是作为开关使用。

教科书上会告诉我们,三极管有三个区,截止区、放大区和饱和区:

极管作为开关使用,就是使用了三极管的截止状态和饱和状态,开的时候处于饱和状态,关的时候处于截止状态。

下面我们用NPN三极管的典型开关电路为例来进行说明。

首先来看截止状态的情况。在三极管的基极电源为100mV时,三极管的Ube小于三极管的开启电压,因为这个开启电压大约是0.7V,所以三极管不导通,处于截止状态:

这时候三极管的集电极和发射极之间是没有电流的。

再来看饱和状态的情况。基于截止状态的电路图,把三极管基极的电源调高到3.3V,此时可以看到三极管的Ube电压变为719mV,达到开启电压:

为什么叫“饱和状态"呢,三极管的Uce电压明明都被集电极电阻抢走了,电压几乎都加在了集电极电阻上。

三极管分得的电压几乎为0,三极管一点都不饱,应该处于“饥饿状态"才对嘛!

关于三极管饱和状态需要具备的条件,教科书一般会说:

1、Ube>0.7V,发射极正偏

2、Uce< Ube,集电极正偏

初这么一看,似乎比较理论化,需要死记硬背。

这里补充一种思路,只需要记住三极管最重要的一条公式就可以了,也就是集电极电流Ic= 基极电流lb 乘以 放大倍数 β。如果放大倍数B小于正常的范围,三极管就是饱和导通了。

从实践的角度,首先查阅三极管的数据手册看放大倍数β是多大,以元器件测试仪电路图中的三极管PMBT3904为例:

可以看到放大倍数在30到300之间,可以近似理解为放大倍数的正常范围在30到300之间。

咱们取最小的放大倍数30,乘以基极电流Ib,得到集电极电流Ic=7.74mA。

如果集电极电流Ic是7.74mA,那么10K欧姆的集电极电阻的电压就是 7.74mA*10 K欧姆=77.4V,这是不可能的,因为集电极电源也就5V。

所以集电极电流Ic不可能有7.74mA这么大,进而说明放大倍数取不到30倍,比放大倍数正常范围中的最小值还要小。实际的放大倍数是:集电极电流496uA除以基极电流258uA等于1.9倍。

三极管尽了最大的努力,都够不到它正常的放大倍数,只能委屈地饱和导通了那如果三极管能够到达它正常的放大倍数,会发生什么呢?咱们尝试一下,把集电极电阻从10K欧姆改为10欧姆,可以看到三极管的集电极电压是4.75V,此时三极管的放大倍数是100倍:

实际上在这个仿真电路中,三极管设定的放大倍数就是100。三极管用正常的放大倍数在工作,此时三极管处于放大状态!

本文通过实物电路产品分析了一键开关机电路的原理,并重点介绍了三极管开关电路。

感谢阅读!

电路啊 深入浅出讲解各种电子电路
评论 (0)
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 334浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 73浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 60浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 190浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 290浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 57浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 175浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 132浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 54浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 177浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦