华中科技大学黄云辉教授团队AdvancedMaterials:固体锂电池安全性更进一步!

锂电联盟会长 2024-10-30 10:31

点击左上角“锂电联盟会长”,即可关注!

研究背景

传统液态电解质在锂离子电池中的应用,尽管广泛,但在极端环境条件下可能不可避免地面临泄漏、燃烧乃至爆炸的风险,这些安全隐患显著制约了其更为广泛的部署。相比之下,固态聚合物电解质(SPE)展现出了诸多优势,包括卓越的安全性、较轻的质量、高度的灵活性、良好的制造可扩展性以及优异的电极粘附性能,这些特性使得SPE在实际应用中更具吸引力。然而,值得注意的是,SPE亦存在潜在的副反应风险,这些反应可能导致电解质的分解,进而引发散热不均的问题,极端情况下甚至会在电池的充放电循环中发生热失控乃至烧毁。因此,确保聚合物固态电池的热安全性,依然是实现其广泛商业化应用所面临的一项重大技术挑战。

成果简介

近日,华中科技大学黄云辉教授的研究团队开发了一种创新的超薄固体聚合物电解质(SPE),该电解质通过在聚乙烯隔膜上沉积由离子液体(具体为1-乙基-3-甲基咪唑二酰胺,简称EMIM:DCA)、聚氨酯(PU)以及锂盐构成的复合材料而制得。这一设计旨在减少声子散射效应,从而提升电解质的性能。该团队所创造的坚固且柔韧的隔膜基质,不仅有效降低了电解液的厚度,还显著提高了锂盐的迁移效率。更为关键的是,该基质为SPE提供了相对规则的热扩散路径,同时有效减少了外部声子散射的干扰。值得注意的是,EMIM:DCA的引入,通过打破聚氨酯聚合物链间原有的随机分子吸引力,显著降低了声子散射现象,进而提升了聚合物内部的热导率。实验结果表明,采用这种新型SPE的电池,其热导率相较于传统设计提高了约6倍,从而有效抑制了电池在充放电过程中的热失控风险。本研究不仅为固体聚合物电解质的设计提供了新的视角,还通过声子工程的策略,为高安全性锂离子电池的开发提供了重要的理论依据和实践指导。

该工作以“Phonon engineering in solid polymer electrolyte towards high safety for solid-state lithium batteries”为题发表在Advanced Materials上。

研究亮点

(1)研究团队采用一步溶剂蒸发法,成功地在聚乙烯隔膜上沉积了由离子液体(EMIM:DCA)、聚氨酯(PU)及锂盐构成的复合材料,进而制备出具有超薄特性的固体聚合物电解质(SPE)。所制备的超薄SPE展现出了优异的锂离子传导性能,其超薄特性有效地缩短了锂离子的扩散路径,进而降低了电池的内阻。同时,SPE的隔膜基质具有出色的坚固性和柔韧性,这极大地增强了与电极的界面稳定性,并赋予了电解质卓越的抗滥用能力。

(2)研究团队通过引入EMIM:DCA,成功地打破了聚氨酯聚合物链间的随机分子间相互作用力,这一创新举措显著减少了声子散射现象,进而提高了聚合物的内部热导率。此外,多孔隔板的加入不仅进一步减少了外部声子散射的影响,还为聚合物的热传导提供了更为规则的通道,使得SPE的热传导率相较于传统电解质有了显著的提升。

(3)本研究通过声子工程的策略,成功地优化了电池的热安全性。实验结果表明,所制备的SPE在纽扣锂电池和袋装电池中均能表现出稳定的循环性能,并且与液态电解质相比,SPE在抑制电池热失控方面展现出了显著的优势。这一研究成果为高能量密度、长循环寿命和高安全性的锂离子电池的设计提供了新的理论依据和实践指导,具有重要的学术价值和实际应用前景。

图文导读

如图1b,聚离子液体(PIL)渗透聚乙烯隔膜,形成混合固体电解质(PPIL)。通过添加EMIM:DCA,聚氨酯(PU)链间的随机相互作用被打破,减少了声子散射,提高了内部热导率。同时,坚固柔韧的隔膜基质确保了超薄PPIL的结构稳定,防止短路并提供了有序的热传导通道(图1c),优化了整体性能和安全性。

图1. PPIL电解质组装SSLB的简便工艺示意图及热传导路径。

通过将设计用于Li+传输的聚离子液体(PIL)渗透至聚乙烯分离器基质内部,成功制备了一种混合型固体电解质(PPIL)。渗透PIL后,所得薄膜的厚度仅略微增加至约13 μm(见图2c)。在30°C的测试条件下,PPIL展现出了1.61 mS cm¹的高离子电导率(图2d所示)。此外,PPIL电解质的活化能(Ea)拟合值为0.17 eV,这一数值明显低于PIL电解质的Ea(见图2e)。在离子转移数方面,PPIL电解质也表现出了最优性能,其tLi+值高达0.79(图2f所示)。在室温条件下,PPIL电解质在对称电池中的临界电流密度达到了2.8 mA cm²,这一数值远高于PIL电解质(图2g所示)。此外,PPIL的机械性能同样出色,其拉伸模量高达140 MPa,拉伸应变更是超过了130%(见图2i)。这些结果充分表明,PPIL聚合物基质具有卓越的弹性模量和整体性能,为锂离子电池领域的研究提供了新的思路和方法。

图2. PPIL电解质的表征。

PPIL对称电池在0.2 mA cm²电流密度下稳定运行2000小时,且300次循环后锂金属表面无锂枝晶(图3a, b, c)。200次循环后,F-Li样品XRD峰值增强,表明LiF有效钝化界面,减少电解液分解(图3d)。C1s光谱显示锂金属负极残留PIL和TFSI碎片,且TFSI-与PU/EMIM:DCA间电荷转移(图3e)。DFT计算表明,PU/EMIM:DCA对TFSI-的结合能高于PU链,增强界面稳定性(图3f)。

图3. PPIL电解质电化学性能探究。

图4综合呈现了PIL与PPIL在室温及不同温度下的热导率对比、以及两者的热重分析(TGA)与差示扫描量热法(DSC)测试结果。这些详尽的数据进一步验证了PPIL电解质在热导率及热稳定性方面相较于PIL的显著优势。具体而言,PPIL不仅表现出更高的热导率,还通过TGA与DSC测试展现出更低的热重损失比例及更弱的热分解反应,从而凸显了其优越的热性能。

图4. PPIL 电解质导热性能研究。

图5全面展示了装配有PPIL电解质的LFP/PPIL/Li全电池的电化学性能。具体而言,该电池在不同电流密度下的放电容量及相关电压曲线被详细记录(图5a和5b),揭示了PPIL电解质在高电流密度下的稳定表现。同时,在0.2 C的电流密度下,电池展现出了出色的长循环性能及稳定的电压曲线(图5c和5d),验证了其持久的循环稳定性。此外,Li/PPIL/NCM811电池在高电压条件下的长循环性能及电压曲线也被测试并记录(图5e),进一步证明了PPIL电解质在高电压环境中的电化学稳定性。综上所述,这些测试结果充分表明,PPIL电解质能够在高电流密度和高电压条件下提供稳定的电化学性能。

图5. Li/PPIL/LFP全电池的电化学性能。

图6a与6b对比了袋式电池在采用PPIL电解液前后的加速量热仪(ARC)测试结果。结果显示,PPIL的引入显著提升了电池的热稳定性,具体表现为:T1(初始放热温度)从100.5℃提升至208.6℃,且T1的发生时间延迟了6×10⁴秒,这表明PPIL电解液有助于形成更稳定的固体电解质界面(SEI)。同时,T2(第二个放热峰温度)也从160.4℃上升到234.5℃,T2发生时间的延迟进一步证实了PPIL的高热稳定性。T3(通常与热失控相关的温度)在采用PPIL后逐渐消失,这归因于PPIL电解质中声子散射的显著减少,有效抑制了热失控的发生。此外,图6c与6d展示了电池在1/3 C倍率下的电化学性能。电池的初始放电容量高达2.8 Ah,且在经过300次循环后,容量保持率仍维持在约93%的高水平,这进一步验证了PPIL电解质在实际应用中的优异性能和循环稳定性。

图6. Ah 级袋状电池在ARC测试中的内在安全特性。

总结与展望
本研究采用一步溶剂蒸发法制备了超薄聚离子液体(PPIL)聚合物电解质,其具有优异的导电性和热稳定性。PPIL的超薄特性缩短了锂离子扩散路径,降低了电池内阻,同时其坚固且柔韧的隔膜基质增强了界面稳定性与抗滥用能力。通过引入EMIM:DCA,减少了声子散射,提高了内部热导率,并且多孔隔板的加入为热传导提供了规则通道,使PPIL的热传导率较传统聚离子液体(PIL)提升了约6倍。实验证明,PPIL在纽扣锂电池和袋装电池中均表现出稳定的循环性能,并能有效抑制电池热失控。本研究通过声子工程策略,为高能量密度、高安全性固态锂电池的设计提供了新的思路。

文献链接
Shi X, Jia Z, Wang D, Jiang B, Liao Y, Zhang G, Wang Q, He D, Huang Y. Phonon Engineering in Solid Polymer Electrolyte toward High Safety for Solid-State Lithium Batteries. Adv Mater. 2024 Aug;36(33):e2405097.

DOI: 10.1002/adma.202405097

原文链接:https://doi.org/10.1002/adma.202405097

锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 174浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦