【光电智造】如何通俗易懂的描述机器学习的流程?

今日光电 2024-10-27 18:03

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----


机器学习和深度学习算法流程


终于考上人工智能的研究僧啦,不知道机器学习和深度学习有啥区别,感觉一切都是深度学习 
挖槽,听说学长已经调了10个月的参数准备发有2000亿参数的T9开天霹雳模型,我要调参发T10准备拿个Best Paper

现在搞传统机器学习相关的研究论文确实占比不太高,有的人吐槽深度学习就是个系统工程而已,没有数学含金量。
但是无可否认的是深度学习是在太好用啦,极大地简化了传统机器学习的整体算法分析和学习流程,更重要的是在一些通用的领域任务刷新了传统机器学习算法达不到的精度和准确率。
深度学习这几年特别火,就像5年前的大数据一样,不过深度学习其主要还是属于机器学习的范畴领域内,所以这篇文章里面我们来唠一唠机器学习和深度学习的算法流程区别。


1、机器学习的算法流程



实际上机器学习研究的就是数据科学(听上去有点无聊),下面是机器学习算法的主要流程:主要从1)数据集准备、2)探索性的对数据进行分析、3)数据预处理、4)数据分割、5)机器学习算法建模、6)选择机器学习任务,当然到最后就是评价机器学习算法对实际数据的应用情况如何。



1.1 数据集

首先我们要研究的是数据的问题,数据集是构建机器学习模型流程的起点。简单来说,数据集本质上是一个M×N矩阵,其中M代表列(特征),N代表行(样本)。
列可以分解为X和Y,X是可以指特征、独立变量或者是输入变量。Y也是可以指类别标签、因变量和输出变量。

1.2 数据分析

进行探索性数据分析(Exploratory data analysis, EDA)是为了获得对数据的初步了解。EDA主要的工作是:对数据进行清洗,对数据进行描述(描述统计量,图表),查看数据的分布,比较数据之间的关系,培养对数据的直觉,对数据进行总结等。
探索性数据分析方法简单来说就是去了解数据,分析数据,搞清楚数据的分布。主要注重数据的真实分布,强调数据的可视化,使分析者能一目了然看出数据中隐含的规律,从而得到启发,以此帮助分析者找到适合数据的模型。 
在一个典型的机器学习算法流程和数据科学项目里面,我做的第一件事就是通过 "盯住数据",以便更好地了解数据。个人通常使用的三大EDA方法包括:
  • 描述性统计:平均数、中位数、模式、标准差。


  • 数据可视化:热力图(辨别特征内部相关性)、箱形图(可视化群体差异)、散点图(可视化特征之间的相关性)、主成分分析(可视化数据集中呈现的聚类分布)等。


  • 数据整形:对数据进行透视、分组、过滤等。

1.3 数据预处理

数据预处理,其实就是对数据进行清理、数据整理或普通数据处理。指对数据进行各种检查和校正过程,以纠正缺失值、拼写错误、使数值正常化/标准化以使其具有可比性、转换数据(如对数转换)等问题。
例如对图像进行resize成统一的大小或者分辨率。 
数据的质量将对机器学习算法模型的质量好坏产生很大的影响。因此,为了达到最好的机器学习模型质量,传统的机器学习算法流程中,其实很大一部分工作就是在对数据进行分析和处理。
一般来说,数据预处理可以轻松地占到机器学习项目流程中80%的时间,而实际的模型建立阶段和后续的模型分析大概仅占到剩余的20%。

1.4 数据分割


训练集 & 测试集

在机器学习模型的开发流程中,希望训练好的模型能在新的、未见过的数据上表现良好。为了模拟新的、未见过的数据,对可用数据进行数据分割,从而将已经处理好的数据集分割成2部分:训练集合测试集。
第一部分是较大的数据子集,用作训练集(如占原始数据的80%);第二部分通常是较小的子集,用作测试集(其余20%的数据)。
接下来,利用训练集建立预测模型,然后将这种训练好的模型应用于测试集(即作为新的、未见过的数据)上进行预测。根据模型在测试集上的表现来选择最佳模型,为了获得最佳模型,还可以进行超参数优化。



训练集 & 验证集 & 测试集

另一种常见的数据分割方法是将数据分割成3部分:1)训练集,2)验证集和3)测试集。
训练集用于建立预测模型,同时对验证集进行评估,据此进行预测,可以进行模型调优(如超参数优化),并根据验证集的结果选择性能最好的模型。
验证集的操作方式跟训练集类似。不过值得注意的是,测试集不参与机器学习模型的建立和准备,是机器学习模型训练过程中单独留出的样本集,用于调整模型的超参数和对模型的能力进行初步评估。通常边训练边验证,这里的验证就是用验证集来检验模型的初步效果。



交叉验证

实际上数据是机器学习流程中最宝贵的,为了更加经济地利用现有数据,通常使用N倍交叉验证,将数据集分割成N个。在这样的N倍数据集中,其中一个被留作测试数据,而其余的则被用作建立模型的训练数据。通过反复交叉迭代的方式来对机器学习流程进行验证。
这种交叉验证的方法在机器学习流程中被广泛的使用,但是深度学习中使用得比较少哈。

1.5 机器学习算法建模

下面是最有趣的部分啦,数据筛选和处理过程其实都是很枯燥乏味的,现在可以使用精心准备的数据来建模。根据taget变量(通常称为Y变量)的数据类型,可以建立一个分类或回归模型。

机器学习算法

机器学习算法可以大致分为以下三种类型之一:

  • 监督学习:是一种机器学习任务,建立输入X和输出Y变量之间的数学(映射)关系。这样的(X、Y)对构成了用于建立模型的标签数据,以便学习如何从输入中预测输出。 
  • 无监督学习:是一种只利用输入X变量的机器学习任务。X变量是未标记的数据,学习算法在建模时使用的是数据的固有结构。 
  • 强化学习:是一种决定下一步行动方案的机器学习任务,它通过试错学习(trial and error learning)来实现这一目标,努力使reward回报最大化。

参数调优

传说中的调参侠主要干的就是这个工作啦。超参数本质上是机器学习算法的参数,直接影响学习过程和预测性能。由于没有万能的超参数设置,可以普遍适用于所有数据集,因此需要进行超参数优化。
以随机森林为例。在使用randomForest时,通常会对两个常见的超参数进行优化,其中包括mtry和ntree参数。mtry(maxfeatures)代表在每次分裂时作为候选变量随机采样的变量数量,而ntree(nestimators)代表要生长的树的数量。
另一种在10年前仍然非常主流的机器学习算法是支持向量机SVM。需要优化的超参数是径向基函数(RBF)内核的C参数和gamma参数。C参数是一个限制过拟合的惩罚项,而gamma参数则控制RBF核的宽度。
调优通常是为了得出超参数的较佳值集,很多时候不要去追求找到超参一个最优值,其实调参侠只是调侃调侃,真正需要理解掌握算法原理,找到适合数据和模型的参数就可以啦。

特征选择

特征选择从字面上看就是从最初的大量特征中选择一个特征子集的过程。除了实现高精度的模型外,机器学习模型构建最重要的一个方面是获得可操作的见解,为了实现这一目标,能够从大量的特征中选择出重要的特征子集非常重要。
特征选择的任务本身就可以构成一个全新的研究领域,在这个领域中,大量的努力都是为了设计新颖的算法和方法。从众多可用的特征选择算法中,一些经典的方法是基于模拟退火和遗传算法。除此之外,还有大量基于进化算法(如粒子群优化、蚁群优化等)和随机方法(如蒙特卡洛)的方法。


1.6 机器学习任务

在监督学习中,两个常见的机器学习任务包括分类和回归。

分类

一个训练好的分类模型将一组变量作为输入,并预测输出的类标签。下图是由不同颜色和标签表示的三个类。每一个小的彩色球体代表一个数据样本。三类数据样本在二维中的显示,这种可视化图可以通过执行PCA分析并显示前两个主成分(PC)来创建;或者也可以选择两个变量的简单散点图可视化。

性能指标

如何知道训练出来的机器学习模型表现好或坏?就是使用性能评价指标(metrics),一些常见的评估分类性能的指标包括准确率(AC)、灵敏度(SN)、特异性(SP)和马太相关系数(MCC)。

回归

最简单的回归模式,可以通过以下简单等式很好地总结:Y = f(X)。其中,Y对应量化输出变量,X指输入变量,f指计算输出值作为输入特征的映射函数(从机器学习模型中得到)。上面的回归例子公式的实质是,如果X已知,就可以推导出Y。一旦Y被计算(预测)出来,一个流行的可视化方式是将实际值与预测值做一个简单的散点图,如下图所示。


对回归模型的性能进行评估,以评估拟合模型可以准确预测输入数据值的程度。评估回归模型性能的常用指标是确定系数(R²)。此外,均方误差(MSE)以及均方根误差(RMSE)也是衡量残差或预测误差的常用指标。

2、深度学习算法流程



深度学习实际上是机器学习中的一种范式,所以他们的主要流程是差不多的。深度学习则是优化了数据分析,建模过程的流程也是缩短了,由神经网络统一了原来机器学习中百花齐放的算法。
在深度学习正式大规模使用之前呢,机器学习算法流程中要花费很多时间去收集数据,然后对数据进行筛选,尝试各种不同的特征提取机器学习算法,或者结合多种不同的特征对数据进行分类和回归。



下面是机器学习算法的主要流程:主要从1)数据集准备、2)数据预处理、3)数据分割、4)定义神经网络模型,5)训练网络。
深度学习不需要我们自己去提取特征,而是通过神经网络自动对数据进行高维抽象学习,减少了特征工程的构成,在这方面节约了很多时间。
但是同时因为引入了更加深、更复杂的网络模型结构,所以调参工作变得更加繁重啦。例如:定义神经网络模型结构、确认损失函数、确定优化器,最后就是反复调整模型参数的过程。
来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论 (0)
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 66浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 103浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 327浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 76浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 86浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 137浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 182浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 169浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 606浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 252浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 500浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 325浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦