上海交大梁正团队&宁德时代最新AEM:氢键调控策略抑制高电压下铝集流体腐蚀

锂电联盟会长 2024-10-26 09:28

点击左上角“锂电联盟会长”,即可关注!

【研究背景】

锂离子电池因其具有高能量密度(>250 Wh kg-1),长循环寿命和低环境污染的优点成为众多移动设备电源的首选。其中,提高电池工作电压是提高能量密度的直接策略,以NCM811为例,将电池开路电压从4.2V提升到4.4V,电池能量密度可提升15%。双(氟磺酰)亚胺锂(LiFSI)因其优异的热稳定性和良好的离子传导能力,一直以来是锂离子电池电解液的首选盐。然而,LiFSI在高压下对正极铝集流体的腐蚀严重限制了它在锂电池中的应用。


【成果简介】

在此,上海交通大学变革性分子前沿科学中心梁正课题组联合宁德时代新能源科技股份有限公司Honggang Yu等人在常规低浓度LiFSI-DMC电解液中引入共溶剂TFMS,通过分子动力学(MD)模拟、核磁和拉曼等证明TFMS与DMC之间形成了氢键相互作用,降低了主溶剂DMC和Li+的配位能力,使得更多的阴离子FSI-参与溶剂化结构,从而抑制游离阴离子FSI-对铝集流体的腐蚀。同时,通过对在TFMS-电解液中循环后的电池正极表面进行cryo-TEM、XPS和TOF-SISM测试发现,TFMS-电解液在正极表面分解产成致密均匀的CEI,进一步保护正极。


相关研究成果以“Solvation Regulation via Hydrogen Bonding to Mitigate Al Current Collector Corrosion for High-Voltage Li-Ion Batteries”为题发表在Advanced Energy Materials上。


【核心内容】

图1. 铝集流体分别在LiFSI-6DMC和LiFSI-6DMC-3TFMS电解液中的腐蚀现象示意图。


图1A展示了在LiFSI-6DMC电解液中,铝集流体在高压下产生Al3+,由于大量的游离阴离子FSI-存在,不稳定的Al3+和电解液中游离的阴离子FSI-结合生成[Al(FSI)x](3-x)+络合物溶解在电解液中,导致铝集流体表面Al3+持续产生,最后使得铝集流体被腐蚀。而在LiFSI-6DMC-3TFMS电解液中,如图1B所示,DMC和共溶剂TFMS之间氢键相互作用的存在降低了DMC和Li+的配位作用,从而促进阴离子FSI-参与溶剂化结构,大大降低游离FSI-的含量,进一步抑制Al3+的溶解,同时富阴离子FSI-的溶剂化结构在正极表面衍生的富LiF/AlF3保护层进一步抑制了铝集流体的腐蚀现象,保证了正极活性物质和集流体之间良好的接触和电子传导能力。


图2. 电解液的溶剂化结构。


同时,通过分子动力学(MD)模拟和径向分布函数(RDF)研究了TFMS对电解液内部溶剂化结构的影响。从图2A、B可以看出,在常规的LiFSI-6DMC电解液中,Li+的初级溶剂化壳(PSSs)主要由DMC分子占据,而FSI阴离子很少。而在LiFSI-6DMC-3TFMS电解液中,TFMS分子参与PSSs形成(如图2D、E所示)。然而,TFMS与Li+之间的配位数(CN)仅为1.57,这可以归因为TFMS的β-C上存在电子吸引基团-CF3。值得注意的是,DMC与Li+之间的配位数CN从3.8降低到2.2,以及FSI与Li+之间的配位数CN从1.4增加到2.1,这表明在TFMS-电解液的PSSs中,部分DMC分子被FSI阴离子所取代,TFMS的加入使得溶剂化结构主要由DMC和FSI所主导。因此,推测这种现象可能是因为DMC和TFMS之间的氢键相互作用:DMC分子中的羰基(─C═O)作为氢键受体,TFMS分子中的─CH3或─CH2─作为氢键供体。为了证明TFMS电解液中的氢键相互作用的存在,使用密度泛函理论(DFT)计算了─C═O···H3C─和─C═O···─H2C─的特定氢键能量(EHB),表明TFMS对DMC有很强的氢键相互作用(图2C、F)。此外,通过核磁(图2G)和拉曼(图2H)进一步验证了TFMS-电解液中氢键的存在。


图3. 铝集流体在不同电解液中的电化学稳定性。


为了评估铝集流体在不同电解液中的腐蚀情况,对Li||Al电池进行循环伏安测试(CV),如图3所示。对于LiFSI-6DMC电解液,随着电位的增加,LiFSI-6DMC对Al-CC的腐蚀电流持续升高,峰值电流密度高达120 μA cm-2(图3A),然而在随后的循环中,仍然可以观察到高强度的腐蚀电流信号。相比之下,使用TFMS-电解液的电池显示出低至2 μA cm-2的腐蚀电流密度(图3B),并且随着循环圈数的增加,腐蚀电流逐渐减小,这表明Al-CC的腐蚀被抑制,并且TFMS-电解液在抑制Al-CC方面和高浓电解液(HCE)相当(图3C)。此外,使用扫描电子显微镜(SEM)来展示在Li||Al半电池5 V恒压5V 20小时后Al-CC的形貌。在LiFSI-6DMC中的Al-CC展现出大面积的腐蚀(图3D),然而,TFMS-电解液的结果与HCE中观察到的结果相似,即恒压20h后Al-CC表面保持平坦和光滑(图3E、F)。


图4. graphite||NCM811全电池的电化学性能。


使用TFMS-电解液的全电池展现了卓越的循环稳定性(图4A)和稳定的容量-电压曲线(图4B),在400圈循环后呈现出88.5%的容量保持率,平均库仑效率(CE)为99.9%。使用LiFSI-1.1DMC的全电池展现出与TFMS-电解液相似的循环性能,但其在200圈循环后的容量保持率略低于TFMS,可能是因为高浓电解液(HCE)的低Li+传导性。而使用LiFSI-6DMC的graphite||NCM811全电池在30圈循环后放电容量和CE急剧下降。此外,在1.2 Ah graphite||NCM811软包电池中进一步评估了TFMS-电解液,结果表明,4.4 V软包电池在TFMS-电解液中循环的初始比能量密度为305.75 Wh kg-1,在200圈循环后保持了其初始容量的89.9%,平均放电电压稳定(图4C、D)。由于Li+传输动力学加快,TFMS-电解液还展现了比HCE更好的倍率性能(图4E)。


图5. 循环后NCM811的形貌表征。


【结论展望】

综上所述,作者证明了DMC和TFMS之间的氢键相互作用对于调节溶剂化结构和在高压下抑制铝集流体(Al-CC)的腐蚀至关重要。这种氢键相互作用削弱了DMC分子与Li+的配位,并增加了FSI阴离子在初级溶剂化壳中的参与度,从而保护了容易受到游离FSI阴离子腐蚀的Al-CC。同时,TFMS的分解和FSI的配位协同促进了一层薄而致密的CEI的形成,有效地抑制了高压下电解液和正极之间的副反应。因此,使用TFMS-电解液的graphite||NCM811电池展现出与使用高浓电解液(HCE)的电池相似的循环性能,但均优于常规碳酸酯电解液(不含TFMS)。此外,使用TFMS-电解液的1.2 Ah graphite||NCM811软包电池在4.4 V截止电压下可以稳定运行超过200圈循环,容量保持率为89.9%,并且没有明显的气体产生和Al-CC腐蚀现象。本研究引入了溶剂主导的氢键相互作用来调节Li+溶剂化结构,以促进在高压条件下LIBs的实际应用。


【文献信息】

Xinran Zhang, Xubing Dong, Xinyang Yue, Jingyu Gao, Zhangqin Shi, Jijiang Liu, Yongteng Dong, Yuanmao Chen, Mingming Fang, Honggang Yu, and Zheng Liang,Solvation Regulation via Hydrogen Bonding to Mitigate Al Current Collector Corrosion for High-Voltage Li-Ion Batteries,2024,Advanced Energy Materials.

https://doi.org/10.1002/aenm.202403588.


文章来源:能源学人
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 100浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 112浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 201浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 168浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 222浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 170浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 240浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 236浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 156浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 232浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦