[半导体后端工艺:第十篇]探索不同材料在晶圆级半导体封装中的作用

芯存社 2024-10-24 19:43

在本系列第九篇文章中,我们介绍了用于构成传统封装的相关材料。本篇文章将探讨用于晶圆级封装(WLP)的各项材料,从光刻胶中的树脂,到晶圆承载系统(WSS)中的粘合剂,这些材料均在晶圆级封装中发挥着重要作用。作为本系列的倒数第二篇文章,将对此进行深入探讨。

   光刻胶(Photoresists, PR)


由感光剂、树脂和溶剂构成,

用于形成电路图案和阻挡层


光刻胶是由可溶性聚合物和光敏材料组成的化合物,当其暴露在光线下时,会在溶剂中发生降解或融合等化学反应。在运用于晶圆级封装的光刻(Photolithography)工艺过程中时,光刻胶可用于创建电路图案,还可在后续电镀(Electroplating)1过程中通过电镀金属丝以形成阻挡层。光刻胶的成分如图1所示。


1电镀(Electroplating):一项晶圆级封装工艺,通过在阳极上发生氧化反应来产生电子,并将电子导入到作为阴极的电解质溶液中,使该溶液中的金属离子在晶圆表面被还原成金属。

▲图1:光刻胶的成分和作用(ⓒ HANOL出版社)

根据光照的反应原理,光刻胶可分为正性光刻胶(Positive PR)和负性光刻胶(Negative PR)。对于正性光刻胶,曝光区域会发生降解反应,导致键合减弱;而未曝光区域则会发生交联(Cross-linking)2反应,使键合增强。因此,被曝光部分在显影过程中会被去除。然而对于负性光刻胶,曝光部分会产生交联反应并硬化,从而被完整保留下来;未曝光部分则被去除。负性光刻胶的粘度通常高于正性光刻胶,旋涂过程中的涂覆厚度更厚,因而通常被用于形成较高的焊接凸点(Solder Bump)。而正性光刻胶则至少需要涂覆两次。


2交联(Cross-link):通过化学键将聚合物链连接在一起的化学反应。


光刻过程中所使用的光源可根据波长进行分类,波长以纳米(nm)为单位。对于细微化(Scaling)的半导体而言,在光刻过程中通常采用波长较短的光源,以增强光刻效果,从而形成更精细的电路图案。因此,光敏化合物(PAC)用于制作曝光波长较长的g线(g-line)3光刻胶和i线(i-line)4光刻胶。而化学放大型抗蚀剂(CAR)5则用于制作曝光波长较短的光刻胶。晶圆级封装通常使用i线步进式光刻机(Stepper)6


3g线(g-line):在汞光谱中,一条对应波长约为436纳米的谱线。

4i线(i-line):在汞光谱中,一条对应波长约为356纳米的谱线。

5化学放大型抗蚀剂(CAR):一种用于提高光刻胶材料光敏性的抗蚀剂。

6步进式光刻机(Stepper):用于曝光晶圆的设备。不同类型的设备用于不同精度晶圆的曝光,具体取决于对应的光源类型。

  电镀液


由金属离子、酸和添加剂组成,

用于可控电镀工艺


电镀液(Plating Solution)是一种在电镀过程中使用的溶液,由金属离子、酸和添加剂组成。其中,金属离子是电镀过程中的待镀物质;酸作为溶剂,用于溶解溶液中的金属离子;多种添加剂用于增强电镀液和镀层的性能。可用于电镀的金属材料包括镍、金、铜、锡和锡银合金,这些金属以离子的形式存在于电镀液中。常见的酸性溶剂包括硫酸(Sulfuric Acid)和甲磺酸(Methanesulfonic Acid)。添加剂包括整平剂(Leveler)和细化剂(Grain Refiner),其中,整平剂用于防止材料堆积,提高电镀层平整性;而晶粒细化剂则可以防止电镀晶粒的横向生长,使晶粒变得更加细小。

▲图2:电镀液中添加剂的作用(ⓒ HANOL出版社)

    光刻胶剥离液(PR Stripper)


使用溶剂完全去除光刻胶


电镀工艺完成后,需使用光刻胶剥离液去除光刻胶,同时注意避免对晶圆造成化学性损伤或产生残留物。图3展示了光刻胶去胶工艺的过程。首先,当光刻胶剥离液与光刻胶表面接触时,两者会发生反应,使光刻胶膨胀;接下来,碱性剥离液开始分解并溶解膨胀的光刻胶。

▲图3:光刻胶剥离液的去胶工序(ⓒ HANOL出版社)

   刻蚀剂


使用酸、过氧化氢等材料精确溶解金属


晶圆级封装需要通过溅射(Sputtering)7工艺形成籽晶层(Seed Layer),即通过溅射或蒸馏的方式形成的一层用于电镀的薄金属。电镀和光刻胶去胶工序完成后,需使用酸性刻蚀剂来溶解籽晶层。


7溅射(Sputtering):一种用高能离子轰击金属靶材,使喷射出来的金属离子沉积到晶圆表面的物理气相沉积工艺。


图4展示了刻蚀剂的主要成分和作用。根据不同的待溶解金属,可选用不同刻蚀剂,如铜刻蚀剂、钛刻蚀剂、银刻蚀剂等。此类刻蚀剂应具有刻蚀选择性——在有选择性地溶解特定金属时,不会溶解或仅少量溶解其它金属;刻蚀剂还应具备较高的刻蚀速率,以提高制程效率;同时还应具备制程的均匀性,使其能够均匀地溶解晶圆上不同位置的金属。

▲图4:刻蚀剂的主要成分和作用(ⓒ HANOL出版社)

   溅射靶材


将金属沉积于基板上


溅射靶材是一种在物理气相沉积(PVD)8过程中,采用溅射工艺在晶圆表面沉积金属薄膜时使用的材料。图5展示了靶材的制造工序。首先,使用与待溅射金属层成分相同的原材料制成柱体;然后经过锻造、压制、和热处理最终形成靶材。


8物理气相沉积(PVD):一种采用物理方法将材料分离并沉积在特定表面的薄膜沉积工艺。

▲图5:溅射靶材的制作工序(ⓒ HANOL出版社)

   底部填充


使用环氧树脂模塑料(EMC)、

胶和薄膜填充孔洞,实现接缝保护


与倒片键合(Flip Chip Bonding)相同,通过填充基板与芯片间的空隙、或以凸点链接的芯片与芯片之间的空隙,底部填充增强了接合处的可靠性。用于填充凸点之间空间的底部填充工艺分为后填充(Post-Filling)和预填充(Pre-applied Underfill)两种。后填充是指完成倒片键合之后填充凸点之间的空间,而预填充则是指在完成倒片键合之前进行填充。此外,后填充可进一步细分为毛细管9底部填充(Capillary Underfill, CUF)和模塑底部填充(Molded Underfill, MUF)。完成倒片键合之后,采用毛细管底部填充工艺,利用毛细管在芯片侧面注入底部填充材料来填充凸点间隙,此种工艺增加了芯片和基板之间的间隙内表面张力。而模塑底部填充则是在模塑过程中使用环氧树脂模塑料(EMC)作为底部填充材料,从而简化工序。


9毛细管(Capillary):一种用于将液体封装材料输送到半导体封装体的极细管材。 


在预填充过程中,芯片级封装和晶圆级封装采用的填充方法也有所不同。对于芯片级封装,会根据接合处的填充物,如非导电胶(NCP)或非导电膜(NCF),根据不同的填充物,其采用的工艺和材料也不尽不同;而对于晶圆级封装,非导电膜则被作为底部填充的主材。图6说明了不同类型的底部填充材料和相关工序。

▲图6:不同类型的底部填充工艺(ⓒ HANOL出版社)

在倒片封装和硅通孔(TSV)型芯片堆叠工艺中,底部填充材料是保证接合处可靠性的关键组成部分。因此,相关材料需满足腔体填充、界面粘附、热膨胀系数(CTE)10、热导性和热阻性等等方面的特定要求。


10热膨胀系数(CTE):一种材料属性,用于表示材料在受热情况下的膨胀程度。

   晶圆承载系统


使用载片、临时键合胶(TBA)、

承载薄膜(Mounting tape)实现封装组装


晶圆承载系统工艺需充分支持薄晶圆载片和临时键合胶等相关工序。载片脱粘后,需使用承载薄膜将正面和背面已形成凸点的薄晶圆固定在环形框架上。


在晶圆承载系统所使用的材料中,临时键合胶尤为重要。在键合晶圆与载片形成硅通孔封装时,临时键合胶必须在晶圆背面加工过程中保持较强的黏附力, 以防止晶圆上的凸点等受损。此外,需确保不会出现排气(Outgassing)11、空隙(Voids)12、分层(Delamination)13和溢出——键合过程中粘合剂从晶圆侧面渗出等现象。最后,载体还必须具备热稳定性和耐化学性,在保证载片易于去除的同时,确保不会留下任何残留物。


11排气(Outgassing):气体从液体或固体物质中释放出来。如果这种气体凝结在半导体器件表面,并对器件性能产生影响,则会导致半导体器件存在缺陷。

12空隙(Voids):因气泡的存在,在材料内部形成的空隙,有可能在高温工艺或脱粘过程中会膨胀,增加使器件发生损坏或故障的风险。

13分层(Delamination):半导体封装中两个相连的表面互相分离的现象。


尽管首选材料为硅载片,但玻璃载片的使用频率也很高。尤其是在脱粘过程中使用激光等光源的工艺时,必需使用玻璃载片。

半导体封装的基本构件

通过这些关于传统封装和晶圆级封装所需材料的文章介绍,我们不难发现,材料的类型和质量需不断与时俱进,以满足半导体行业的发展需求。下一篇文章,即后端工艺系列的最后一篇文章中,我们将着重介绍针半导体产品的各种可靠性测试。



推荐阅读

MTK、高通、紫光展锐手机SOC平台型号对比汇总(含详细参数,更新至2023年2月份)

MTK联发科5G旗舰SOC平台详解-更新至2024年10月08日

2013-2023年全球智能手机出货量排名,明年智能手机市场将全面反弹

2024年上半年ODM/IDH智能手机出货量排名

MediaTek 联发科 天玑 9000 系列移动平台详细参数对比

天玑9000(MT6983)Memory AVL以及PoP封装介绍

G99 (MT6789)平台Memory AVL

一文看懂NAND、eMMC、UFS、eMCP、uMCP、DDR、LPDDR及存储器和内存区别

SK hynix海力士DDR、LPDDR、UFS、eMMC、eMCP、uMCP规格型号参数对照表

什么是集成电路、工艺、CPU、GPU、NPU、ISP、DSP ?存储器和内存的区别是什么

科普;设计一颗芯片有多难,芯片是如何制造的,一片晶圆能切割多少片芯片?

三星内存eMCP、UMCP、eMMC、LPDDR、DDR型号参数对照表

WiFi发展史丨什么是WiFi6、WiFi6E和WiFi7以及参数对比

消费级、工业级、汽车级、军工级、航天级芯片区别对比

全球前五大存储厂商产品介绍Roadmap及代理商信息

KIOXIA 铠侠UFS、eMMC、NAND型号参数对照表

全球移动通信射频前端厂商汇总(含晶圆、封测)

手机平板常用存储型号容量对照表

全球80家无线通信模组企业汇总及介绍

三星、苹果手机处理器参数及代表机型

PCB板的价格是怎么算出来的(详解)

一文看懂智能手机常用传感器

MCU最强科普总结(收藏版)

芯存社 移动通信芯片组、存储器、射频前端。
评论 (0)
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 341浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 116浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 345浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 305浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 316浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 104浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 560浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 458浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 128浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 213浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 341浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 56浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 52浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 300浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦