热点丨诺贝尔物理学奖颁给了两位机器学习先驱,AI已成物理学前沿课题

AI芯天下 2024-10-14 20:30

·聚焦:人工智能、芯片等行业

欢迎各位客官关注、转发






前言
机器学习所展现的智能,实则是[涌现]现象的一种体现。

这里的[涌现],在广义上,描述的是多个微小个体在相互作用下,共同构成了一个整体,而这个整体所展现出的特性,是单独个体所无法具备的,即所谓的[量变导致质变]。

在物理学等学科领域,涌现现象已被深入研究和探讨,尤其是在凝聚态物理学中,它着重揭示了微观结构与宏观物理性质之间的紧密联系。



作者 | 方文三
图片来源 |  网 络 


诺贝尔物理学奖颁给了两位机器学习先驱

10月8日,瑞典皇家科学院正式宣告,2024年度诺贝尔物理学奖已决定授予美国杰出科学家约翰·霍普菲尔德与英裔加拿大卓越科学家杰弗里·辛顿,以表彰他们运用物理学工具,奠定了当代先进机器学习技术的基石。

瑞典皇家科学院的官方解释指出,霍普菲尔德教授的贡献在于创造了一种新型的信息存储与重构结构;


而辛顿教授则发明了能够自主发现数据属性的方法,这一方法对现代大型人工神经网络的发展具有不可估量的价值。


因此,此次颁奖旨在表彰他们[在利用人工神经网络进行机器学习方面的基础性发现和发明]。


两位获奖者通过物理学工具,提出了驱动人工神经网络运行的创新方法,该方法利用大脑启发的分层结构来学习并理解抽象概念。


简而言之,霍普菲尔德与辛顿两位学者,均借助物理学的基本原理与技术手段,成功研发出依托网络架构处理信息的技术。


这一重大发现被诺贝尔奖委员会主席、瑞典卡尔斯塔德大学物理学家Ellen Moons在发布会上高度评价为[构成了机器学习的基石,能够显著提升人类决策的速度与可靠性]。


从逻辑层面分析,瑞典皇家科学院认为机器学习可作为探索物理世界的一种有力工具,其潜在应用广泛,而非简单地将机器学习等同于物理研究本身。


回顾历史,具有物理学背景的理论生物学家霍普菲尔德教授于1982年提出了一种新型网络模型。


该模型将虚拟神经元之间的连接比作物理力,通过低能状态存储模式,并能在接收到相似输入时再现这些模式。


这一结构被称为联想记忆,其工作机制与大脑通过相关信息回忆词汇或概念的方式相类似。


霍普菲尔德教授提出了一种联想存储器,该存储器能够存储和重建图像以及其他类型的数据模式,这一理论的基础正是源自于物理学中的自旋系统。


而辛顿教授则发明了玻尔兹曼机,这一模型的灵感来源于统计物理学。


玻尔兹曼机引入了一种用于模式识别的概率模型,其训练算法和动力学原理在一定程度上与简单的物理过程相似。



霍普菲尔德:创建[霍普菲尔德网络]模型


约翰・霍普菲尔德,1933年出生于美国芝加哥,以其在多个领域的卓越贡献而闻名。

他拥有康奈尔大学物理学博士学位,既是一位杰出的生物物理学家、神经科学家,又是一位计算机科学家。


霍普菲尔德创建的[霍普菲尔德网络]具有重大的创新意义。这个网络能够存储和重构图像以及数据中的其他类型模式。


它就像是一个强大的记忆库,当给定一个不完整或稍微扭曲的网络模式时,能够有条不紊地处理节点并更新它们的值,从而降低网络的能量,逐步找到与输入的不完美图像最相似的保存图像。


这一过程仿佛是在大海中捞针,但[霍普菲尔德网络]却能高效地完成这个任务。


霍普菲尔德的工作不仅在实际应用中有很大价值,对神经网络动力学也有着深入的理解。


他利用描述自旋相互影响时材料如何发展的物理学原理,建立了一个具有节点和连接的模型网络。


这种将物理学原理应用于神经网络的方法,为后续的研究提供了新的思路和方向。


通过不断改进网络,使保存更多的图片成为可能,即使它们非常相似,也可以区分它们。


霍普菲尔德的贡献得到了广泛的认可,他曾获得2022年玻尔兹曼奖。


这个奖项是对他在扩展统计物理学边界、涵盖生命现象以及对神经网络动力学研究方面的高度肯定。


他的研究成果为机器学习和人工智能的发展奠定了坚实的基础,也为物理学与其他学科的交叉融合树立了榜样。



辛顿:玻尔兹曼机带来变个性突破


杰弗里・辛顿,1947 年出生于英国伦敦,在人工智能领域有着举足轻重的地位。

他以霍普菲尔德网络为基础,开发出了[玻尔兹曼机],为机器学习的发展带来了革命性的突破。


玻尔兹曼机是一种可通过输入数据集学习概率分布的随机生成神经网络。


它不是从指令中学习,而是从给定的例子中学习。通过给机器输入案例来训练机器,玻尔兹曼机可对图像进行分类,或者为它所训练的模式类型创建新的案例。


每次更新一个节点的值,最终机器将进入一种状态,在这种状态下,节点的模式可以改变,但整个网络的属性保持不变。


根据玻尔兹曼方程,每个可能的模式都有一个特定的概率,这个概率由网络的能量决定。


当机器停止时,它创造了一个新的模式,这使得玻尔兹曼机成为了生成模型的早期例子。


辛顿的贡献不仅仅在于发明了玻尔兹曼机,还在于他在此基础上帮助启动了当前机器学习的爆炸性发展。


2006年,他和同事开发了一种预训练网络的方法,该网络由一系列分层的波尔兹曼机组成。这种预训练为网络中的连接提供了一个更好的起点,从而优化了识别图像元素的训练。


辛顿的成就得到了国际社会的高度认可。他曾获得 2018 年图灵奖,这是计算机领域的最高荣誉。



机器学习可以帮助科学家寻找隐含规律


机器学习在物理学的多个领域都发挥着重要作用,包括多体物理、粒子物理、天体物理等。

在多体物理领域,机器学习可以帮助科学家寻找隐含规律。


例如,通过分析大量的实验数据和模拟结果,机器学习算法可以自动发现多体系统中的关联性和规律,为理解复杂的多体物理现象提供新的视角。


在粒子物理中,机器学习能够挖掘有效信息。大型强子对撞机等实验产生了海量的粒子物理数据,传统的数据分析方式往往效率低下。


而机器学习技术可以快速从这些复杂的数据中提取有用的信息和模式,辅助发现新的粒子和相互作用,加速研究进程。


据统计,在某些粒子物理实验中,机器学习算法能够将数据分析的效率提高数倍甚至数十倍。


在天体物理方面,机器学习可以提升研究效率。天体观测数据通常非常庞大且复杂,机器学习可以在分析这些数据、探测引力波、预测宇宙演化等方面发挥重要作用。


例如,通过机器学习算法对天体观测数据进行分类、聚类和降维等操作,可以更好地理解和解释天体物理现象,为解开宇宙奥秘提供有力支持。



物理学与AI之间的桥梁已稳固搭建


尽管人类大脑拥有约100万亿个神经元连接,而GPT等AI模型的连接数仅为万亿级别,但GPT却能凭借超过1700亿个参数,记忆并理解人类全部知识与文明,甚至进行高级别的抽象思考。

这表明,AI在利用有限连接处理海量知识方面,可能比人类更为高效,或已探索出更为优化的学习路径。


年初由Sora引发的[世界模型]争议,便是物理AI领域的一次重要里程碑。


尽管Sora的构想较为理想化,且OpenAI尚未公开其完全体形态,但科技巨头们对AI在物理学领域的研究并未止步。


例如,英伟达CEO黄仁勋在Computex 2024上预测,AI的下一波浪潮将是物理AI(实体AI)。


人工神经网络并非最新研究方向,从上世纪60年代起,科学家们就开始研究,且研究过程几经起伏。

不论是霍普菲尔德还是辛顿,他们的研究都经历了从热到冷再到热的过程。


尤其是辛顿,更为业内人士熟知的是他30年坐[冷板凳]的故事。


早在上世纪80年代,人工神经网络曾是热门研究方向,但由于当时计算机算力等问题,这个领域一度被认为难有突破,很快就不再为人们所关注。


但是,这两位学者却能持续地在神经网络方向耕耘。神经网络深度学习可说在他们的研究基础上得到了爆发式发展。


霍普菲尔德提出的[霍普菲尔德神经网络],以物理学中的自旋系统能量为喻,揭示了神经网络运作的奥秘;


而辛顿则更进一步,运用统计物理学工具提出[玻尔兹曼机]模型,其研究成果不仅奠定了计算机视觉系统与大语言模型的基础,更引领全球迎来了新一轮生成式AI革命的浪潮。



结尾:


随着技术的不断发展,机器学习与物理学的融合将更加紧密,为科学研究揭开更多的谜团和秘密。

然而,在此进程中,仍存若干悬而未决的问题,致使科学界对神经网络的研究一度陷入沮丧之境。


部分资料参考:自然系列:《[将超越人的智力水平]:机器学习先驱获2024年诺贝尔物理学奖》,APPSO:《诺贝尔奖快被AI包圆了,这10个冷知识带你重新认识AI教父》,乌鸦智能说:《AI[统治]诺贝尔奖背后,知识的贬值已经开始了》,镁客网:《AI拿下诺贝尔物理学,是为Sora的[世界模型]打广告?》,文汇教育:《实属[没有想到]!两位AI先驱摘获诺贝尔物理学奖》,新京报:《两名科学家分享2024诺贝尔物理学奖,其中一位是[AI教父]》,硅星人Pro:《最惊人又合理的诺贝尔物理学奖,颁给AI先驱Geoffrey 辛顿和John 霍普菲尔德》,钛媒体AGI:《2024诺贝尔物理学奖颁给两位[AI教父]》


本公众号所刊发稿件及图片来源于网络,仅用于交流使用,如有侵权请联系回复,我们收到信息后会在24小时内处理。




END


推荐阅读:


商务合作请加微信勾搭:

18948782064

请务必注明:

「姓名 + 公司 + 合作需求」


AI芯天下 聚焦人工智能,AI芯片,5G通讯等行业动态
评论 (0)
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 154浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 594浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 116浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 63浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 169浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 327浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 94浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 77浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 68浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 224浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 324浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 494浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦