【光电智造】在win11上跑yolo目标检测算法全流程

今日光电 2024-10-14 18:00

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

一、在anaconda中创建虚拟环境yolov5,python版本不低于3.8即可。

  1. conda create -n yolo5 python==3.9  


二、激活环境,下载pytorch框架(以cpu版本为例),pytorch版本不低于1.8即可。

  1. activate yolov5  

  2. pip3 install torch torchvision torchaudio  


三、下载源代码

可以采用git或者pycharm终端来下载代码,并安装相关的库。

  1. git clone https://github.com/ultralytics/yolov5    

  2. cd yolov5  

  3. pip install -r requirements.txt  


四、YoLov5代码解析:

检测参数以及main函数解析

if __name__ == '__main__':    """    weights:训练的权重    source:测试数据,可以是图片/视频路径,也可以是'0'(电脑自带摄像头),也可以是rtsp等视频流    output:网络预测之后的图片/视频的保存路径    img-size:网络输入图片大小    conf-thres:置信度阈值    iou-thres:做nms的iou阈值    device:设置设备    view-img:是否展示预测之后的图片/视频,默认False    save-txt:是否将预测的框坐标以txt文件形式保存,默认False    classes:设置只保留某一部分类别,形如0或者0 2 3    agnostic-nms:进行nms是否也去除不同类别之间的框,默认False    augment:推理的时候进行多尺度,翻转等操作(TTA)推理    update:如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False    """    parser = argparse.ArgumentParser()    parser.add_argument('--weights', nargs='+', type=str, default='', help='model.pt path(s)')    parser.add_argument('--source', type=str, default='inference/images', help='source')  # file/folder, 0 for webcam    parser.add_argument('--output', type=str, default='inference/output', help='output folder')  # output folder    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')    parser.add_argument('--conf-thres', type=float, default=0.65, help='object confidence threshold')    parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')    parser.add_argument('--view-img', action='store_true', help='display results')    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')    parser.add_argument('--augment', action='store_true', help='augmented inference')    parser.add_argument('--update', action='store_true', help='update all models')    opt = parser.parse_args()    print(opt)
with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() # 去除pt文件中的优化器等信息 strip_optimizer(opt.weights) else: detect()


detect函数解析

vimpo argparseimport osimport platformimport shutilimport timefrom pathlib import Path
import cv2import torchimport torch.backends.cudnn as cudnnfrom numpy import random
from models.experimental import attempt_loadfrom utils.datasets import LoadStreams, LoadImagesfrom utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)from utils.torch_utils import select_device, load_classifier, time_synchronized

def detect(save_img=False): # 获取输出文件夹,输入源,权重,参数等参数 out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize # 获取设备 device = select_device(opt.device) # 移除之前的输出文件夹 if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # 如果设备为gpu,使用Float16 half = device.type != 'cpu' # half precision only supported on CUDA
# Load model # 加载Float32模型,确保用户设定的输入图片分辨率能整除32(如不能则调整为能整除并返回) model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size # 设置Float16 if half: model.half() # to FP16
# Second-stage classifier # 设置第二次分类,默认不使用 classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval()
# Set Dataloader # 通过不同的输入源来设置不同的数据加载方式 vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True # 如果检测视频的时候想显示出来,可以在这里加一行view_img = True view_img = True dataset = LoadImages(source, img_size=imgsz)
# Get names and colors # 获取类别名字 names = model.module.names if hasattr(model, 'module') else model.names # 设置画框的颜色 colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference t0 = time.time() # 进行一次前向推理,测试程序是否正常 img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once """ path 图片/视频路径 img 进行resize+pad之后的图片 img0 原size图片 cap 当读取图片时为None,读取视频时为视频源 """ for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) # 图片也设置为Float16 img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # 没有batch_size的话则在最前面添加一个轴 if img.ndimension() == 3: img = img.unsqueeze(0)
# Inference t1 = time_synchronized() # print("preprocess_image:", t1 - t0) # t1 = time.time() """ 前向传播 返回pred的shape是(1, num_boxes, 5+num_class) h,w为传入网络图片的长和宽,注意dataset在检测时使用了矩形推理,所以这里h不一定等于w num_boxes = h/32 * w/32 + h/16 * w/16 + h/8 * w/8 pred[..., 0:4]为预测框坐标 预测框坐标为xywh(中心点+宽长)格式 pred[..., 4]为objectness置信度 pred[..., 5:-1]为分类结果 """ pred = model(img, augment=opt.augment)[0] t1_ = time_synchronized() print('inference:', t1_ - t1)
# Apply NMS # 进行NMS """ pred:前向传播的输出 conf_thres:置信度阈值 iou_thres:iou阈值 classes:是否只保留特定的类别 agnostic:进行nms是否也去除不同类别之间的框 经过nms之后,预测框格式:xywh-->xyxy(左上角右下角) pred是一个列表list[torch.tensor],长度为batch_size 每一个torch.tensor的shape为(num_boxes, 6),内容为box+conf+cls """ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # t2 = time.time()
# Apply Classifier # 添加二次分类,默认不使用 if classify: pred = apply_classifier(pred, modelc, img, im0s)
# Process detections # 对每一张图片作处理 for i, det in enumerate(pred): # detections per image # 如果输入源是webcam,则batch_size不为1,取出dataset中的一张图片 if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s # 设置保存图片/视频的路径 save_path = str(Path(out) / Path(p).name) # 设置保存框坐标txt文件的路径 txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') # 设置打印信息(图片长宽) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size # 调整预测框的坐标:基于resize+pad的图片的坐标-->基于原size图片的坐标 # 此时坐标格式为xyxy
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results # 打印检测到的类别数量 for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results # 保存预测结果 for *xyxy, conf, cls in det: if save_txt: # Write to file # 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存 xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format # 在原图上画框 if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Print time (inference + NMS) # 打印前向传播+nms时间 print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results # 如果设置展示,则show图片/视频 if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration
# Save results (image with detections) # 设置保存图片/视频 if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0)
if save_txt or save_img: print('Results saved to %s' % Path(out)) # 打开保存图片和txt的路径(好像只适用于MacOS系统) if platform == 'darwin' and not opt.update: # MacOS os.system('open ' + save_path) # 打印总时间 print('Done. (%.3fs)' % (time.time() - t0))

来自csdn:

https://blog.csdn.net/Q1u1NG/article/details/108093525

yolov5代码:https://github.com/ultralytics/yolov5

五、注意事项

1.运行结果示例:

(注意:模型文件的下载需要魔法)

2.所有安装的库和框架需要安装在一个环境中;

3.如果遇到pip安装失败,用魔法和国内镜像源均失败的情况下,需要将anaconda更新到最新版本,建议卸载重新安装

4.安装anaconda后,需要检查一下电脑环境变量是否有:

D:\anaconda

D:\anaconda\Scripts\

D:\anaconda\Library\bin

D:\anaconda\Library\mingw-w64\bin

如果没有需要手动添加(一般情况下是没有)


参考:https://blog.csdn.net/qq_42310545/article/details/132280300

https://blog.csdn.net/ECHOSON/article/details/121939535


来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论 (0)
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 166浏览
  •     爬电距离指的是两个带电体之间、带电体和大地之间,沿着绝缘材料表面的最短距离。与爬电距离有关的标准有IEC 61010-1。PCB设计方面,可以参照IPC-2221B。        (图源TI)    任何情况下,爬电距离不允许小于电气间隙。当绝缘材料是空气时,爬电距离可以和电气间隙相等。电气间隙的简介见协议标准第011篇。        一般情况下
    电子知识打边炉 2025-04-19 20:54 45浏览
  •     CTI是Comparative Tracking Indices的缩写,在GB 4207中被译作“比较追踪指数”,我认为还是“漏电起痕指数”更容易理解。    CTI表述了材料的绝缘特性——阻止不希望出现的电流。CTI的单位是V,在绝缘物表面添加一定量的电解液并施加电场,观察在绝缘物表面既不会持续产生火焰,也不会因为热、介质击穿、湿气或者污染物产生电弧放电留下痕迹(起痕)的最高电压。CTI的测量方法见IEC 60112 (GB 4207)。&nbs
    电子知识打边炉 2025-04-19 21:20 54浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 65浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 196浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 156浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 150浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 185浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 110浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 148浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 202浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 37浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 121浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦