【光电智造】在win11上跑yolo目标检测算法全流程

今日光电 2024-10-14 18:00

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

一、在anaconda中创建虚拟环境yolov5,python版本不低于3.8即可。

  1. conda create -n yolo5 python==3.9  


二、激活环境,下载pytorch框架(以cpu版本为例),pytorch版本不低于1.8即可。

  1. activate yolov5  

  2. pip3 install torch torchvision torchaudio  


三、下载源代码

可以采用git或者pycharm终端来下载代码,并安装相关的库。

  1. git clone https://github.com/ultralytics/yolov5    

  2. cd yolov5  

  3. pip install -r requirements.txt  


四、YoLov5代码解析:

检测参数以及main函数解析

if __name__ == '__main__':    """    weights:训练的权重    source:测试数据,可以是图片/视频路径,也可以是'0'(电脑自带摄像头),也可以是rtsp等视频流    output:网络预测之后的图片/视频的保存路径    img-size:网络输入图片大小    conf-thres:置信度阈值    iou-thres:做nms的iou阈值    device:设置设备    view-img:是否展示预测之后的图片/视频,默认False    save-txt:是否将预测的框坐标以txt文件形式保存,默认False    classes:设置只保留某一部分类别,形如0或者0 2 3    agnostic-nms:进行nms是否也去除不同类别之间的框,默认False    augment:推理的时候进行多尺度,翻转等操作(TTA)推理    update:如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False    """    parser = argparse.ArgumentParser()    parser.add_argument('--weights', nargs='+', type=str, default='', help='model.pt path(s)')    parser.add_argument('--source', type=str, default='inference/images', help='source')  # file/folder, 0 for webcam    parser.add_argument('--output', type=str, default='inference/output', help='output folder')  # output folder    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')    parser.add_argument('--conf-thres', type=float, default=0.65, help='object confidence threshold')    parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')    parser.add_argument('--view-img', action='store_true', help='display results')    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')    parser.add_argument('--augment', action='store_true', help='augmented inference')    parser.add_argument('--update', action='store_true', help='update all models')    opt = parser.parse_args()    print(opt)
with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() # 去除pt文件中的优化器等信息 strip_optimizer(opt.weights) else: detect()


detect函数解析

vimpo argparseimport osimport platformimport shutilimport timefrom pathlib import Path
import cv2import torchimport torch.backends.cudnn as cudnnfrom numpy import random
from models.experimental import attempt_loadfrom utils.datasets import LoadStreams, LoadImagesfrom utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)from utils.torch_utils import select_device, load_classifier, time_synchronized

def detect(save_img=False): # 获取输出文件夹,输入源,权重,参数等参数 out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize # 获取设备 device = select_device(opt.device) # 移除之前的输出文件夹 if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # 如果设备为gpu,使用Float16 half = device.type != 'cpu' # half precision only supported on CUDA
# Load model # 加载Float32模型,确保用户设定的输入图片分辨率能整除32(如不能则调整为能整除并返回) model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size # 设置Float16 if half: model.half() # to FP16
# Second-stage classifier # 设置第二次分类,默认不使用 classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval()
# Set Dataloader # 通过不同的输入源来设置不同的数据加载方式 vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True # 如果检测视频的时候想显示出来,可以在这里加一行view_img = True view_img = True dataset = LoadImages(source, img_size=imgsz)
# Get names and colors # 获取类别名字 names = model.module.names if hasattr(model, 'module') else model.names # 设置画框的颜色 colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference t0 = time.time() # 进行一次前向推理,测试程序是否正常 img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once """ path 图片/视频路径 img 进行resize+pad之后的图片 img0 原size图片 cap 当读取图片时为None,读取视频时为视频源 """ for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) # 图片也设置为Float16 img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # 没有batch_size的话则在最前面添加一个轴 if img.ndimension() == 3: img = img.unsqueeze(0)
# Inference t1 = time_synchronized() # print("preprocess_image:", t1 - t0) # t1 = time.time() """ 前向传播 返回pred的shape是(1, num_boxes, 5+num_class) h,w为传入网络图片的长和宽,注意dataset在检测时使用了矩形推理,所以这里h不一定等于w num_boxes = h/32 * w/32 + h/16 * w/16 + h/8 * w/8 pred[..., 0:4]为预测框坐标 预测框坐标为xywh(中心点+宽长)格式 pred[..., 4]为objectness置信度 pred[..., 5:-1]为分类结果 """ pred = model(img, augment=opt.augment)[0] t1_ = time_synchronized() print('inference:', t1_ - t1)
# Apply NMS # 进行NMS """ pred:前向传播的输出 conf_thres:置信度阈值 iou_thres:iou阈值 classes:是否只保留特定的类别 agnostic:进行nms是否也去除不同类别之间的框 经过nms之后,预测框格式:xywh-->xyxy(左上角右下角) pred是一个列表list[torch.tensor],长度为batch_size 每一个torch.tensor的shape为(num_boxes, 6),内容为box+conf+cls """ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # t2 = time.time()
# Apply Classifier # 添加二次分类,默认不使用 if classify: pred = apply_classifier(pred, modelc, img, im0s)
# Process detections # 对每一张图片作处理 for i, det in enumerate(pred): # detections per image # 如果输入源是webcam,则batch_size不为1,取出dataset中的一张图片 if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s # 设置保存图片/视频的路径 save_path = str(Path(out) / Path(p).name) # 设置保存框坐标txt文件的路径 txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') # 设置打印信息(图片长宽) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size # 调整预测框的坐标:基于resize+pad的图片的坐标-->基于原size图片的坐标 # 此时坐标格式为xyxy
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results # 打印检测到的类别数量 for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results # 保存预测结果 for *xyxy, conf, cls in det: if save_txt: # Write to file # 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存 xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format # 在原图上画框 if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Print time (inference + NMS) # 打印前向传播+nms时间 print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results # 如果设置展示,则show图片/视频 if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration
# Save results (image with detections) # 设置保存图片/视频 if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0)
if save_txt or save_img: print('Results saved to %s' % Path(out)) # 打开保存图片和txt的路径(好像只适用于MacOS系统) if platform == 'darwin' and not opt.update: # MacOS os.system('open ' + save_path) # 打印总时间 print('Done. (%.3fs)' % (time.time() - t0))

来自csdn:

https://blog.csdn.net/Q1u1NG/article/details/108093525

yolov5代码:https://github.com/ultralytics/yolov5

五、注意事项

1.运行结果示例:

(注意:模型文件的下载需要魔法)

2.所有安装的库和框架需要安装在一个环境中;

3.如果遇到pip安装失败,用魔法和国内镜像源均失败的情况下,需要将anaconda更新到最新版本,建议卸载重新安装

4.安装anaconda后,需要检查一下电脑环境变量是否有:

D:\anaconda

D:\anaconda\Scripts\

D:\anaconda\Library\bin

D:\anaconda\Library\mingw-w64\bin

如果没有需要手动添加(一般情况下是没有)


参考:https://blog.csdn.net/qq_42310545/article/details/132280300

https://blog.csdn.net/ECHOSON/article/details/121939535


来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 52浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 123浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 56浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 113浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 88浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 155浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 198浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 118浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 105浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 64浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦