诺奖进入“AI时代”,人类何去何从?

原创 美股研究社 2024-10-11 18:26

戳👇🏻关注 社长带你港股掘金


AI产业革命将如何演进下去?


来源 | 美股研究社


“假设青蛙创造了人类,那么你认为现在谁会占据主动权,是人,还是青蛙?”

         

 

这是“AI教父”杰弗里·辛顿在2023北京智源大会上提出的问题。作为谷歌前任副总裁,他不惜辞去担任了十多年的职位,只为能够自由地讨论、提示“人工智能的危险”。


只不过,一年过去,AI不仅没有走到他口中的“毁灭人类”那一步,反倒是给他带来了无数科学家梦寐以求的荣誉—诺贝尔物理学奖。而且不仅是物理学奖,诺贝尔化学奖也同样颁给了三位用 AI 研究蛋白质结构的科学家,震惊学界。

         

 

代表人类在物理学和化学领域的最高成就和最新成果的大奖,如今却颁给了AI。这不仅仅是对科学家的认可,显然也是对“AI辅助科学研究”这一应用趋势的肯定。

         

 

与此同时,10月9日,英伟达在华盛顿启动了为期三天的“AI峰会”。和以往不同,这次的发布会并不涉及新产品,而是更多地聚焦于AI在应用层面取得的成功。用英伟达企业平台副总裁鲍勃·佩特的话来说,“世界正处在AI应用的边缘。”

         

 

从诺奖对AI应用的鼓励,再到英伟达对AI应用的关注,我们可以从中得到怎样的启示?

         

 



接连震惊物理学界与化学界,

AI的故事讲到哪一步了?






根据瑞典皇家科学院的解释,杰弗里·辛顿之所以能获得诺贝尔物理学奖,是为了表彰他在使用人工神经网络进行机器学习方面的奠基性贡献。他提出的机器学习技术被广泛运用于物理学界的数据分析、模型构建等领域。

         

 

与此同时,诺贝尔化学奖则有一半共同授予了谷歌旗下DeepMind公司AI科学家德米斯·哈萨比斯和约翰·江珀,以表彰他们研发出的“Alpha Fold2”模型在蛋白质结构预测方面的成就。

         

 

         

 

不难看出,在这两个案例中,AI其实并没有单独获奖,它在学界也并不是孤立的,而是以交叉学科、跨界融合的方式应用在具体的科研领域。

         

 

与之相似的是,在英伟达的AI峰会上,副总裁鲍勃·佩特也在强调AI在现实领域的应用:“从智能助理,到机器人工厂,再到天气预测,治疗癌症、探索外星,在英伟达的CUDA库中已经有超过4000个AI应用,帮助各行各业实现突破。预计人工智能将在所有利用该技术的行业里产生高达20万亿美元的影响。”

         

 

例如,美国国家癌症研究所正在使用英伟达的AI服务,用于医学图像分析、从大数据库提取信息,从而帮助药企和科研人员筛选新药分子,大大减少开发新药所需的时间。

         

 

事实上,不只是英伟达,此前,Meta曾经推出了首款AR眼镜,开始探索AI硬件,最近又推出了Meta AI聊天软件,开始“软硬一体”地探索AI应用。而马斯克更是将FSD视为特斯拉的核心卖点,声称自己推出的Robotaxi会重塑全球交通运输行业,“这将载入史册”。

         

 

由此可见,AI的发展的重心,已经从早期的算力层、模型层,开始全面转向最终的应用层;AI的技术的进步也将由“技术驱动”转向“应用驱动”。

         

 



为什么会产生这种转变?






回顾生成式AI的发展历程。在短短几年内,从算力芯片、服务器的进步,到算法和模型的优化,再到消费端应用的井喷,与AI有关的产业链生态几乎在瞬间形成。放在过去的工业和互联网革命时代,这一过程往往需要经历了几十年甚至上百年的积累,如今却大大加速,为什么?

         

 

资本的介入无疑是最大的动力,近年来,中国、美国、欧洲的科技巨头、投资机构几乎是在“争抢”着在投资AI。


以亚马逊、微软、Alphabet和Meta的季度资本支出情况为例,在今年的第二季度,四大巨头共花费500多亿美元投资AI。Meta首席执行官扎克伯格更是公开宣布,公司将在2024年底前购入60万颗GPU。马斯克也表示计划在明年夏季前采购30万颗GPU。

         

 

与此同时,中国的阿里、腾讯等互联网大厂也不甘示弱,将国内的几大AI初创公司悉数收入囊中。

         

 

图源:智东西

         

 

         

 

热钱的涌入,更是让AI初创公司估值水涨船高。从最近一轮的融资情况来看,Open AI的投后估值已经达到1570亿美元,仅次于字节跳动和埃隆·马斯克创办的Space X。

         

 

然而,这种投入在早期虽说是不计成本,但从长期来看,仍然是企业为了追求更高的营收和利润增长而进行的投资,是需要拿出回报的。而目前来看,除了英伟达、台积电等上游厂商赚得盆满钵满以外,几乎所有的大模型都在疯狂亏损。据Open AI预测,公司目前高达数十亿美元的年度亏损将持续扩大,预计在2026年将亏损140亿美元,2029年才能盈利。

         

 

从这个角度来看,无论是算力芯片公司(如英伟达),还是科技巨头(如Meta、tsla),都需要让AI在应用层面展现出真正的商业化能力、证明自己,才能吸引更多的人和钱参与进来,将AI的故事讲下去。因此才会出现这种在发展重心上的转变。

         

 



AI产业革命将如何演进下去?






事实上,宏碁集团创办人施振荣曾经提出过一个“微笑曲线”理论,用来解释当下大部分AI公司盈利难的问题再合适不过。

         

 

在他看来,制造业中,研发和营销等高附加值环节位于曲线两端,往往能够获取较高的利润,而中间的生产制造环节所获得的利润则相对较低。

         

 

         

 

类比到AI,AI产业链也同样包括三个主要环节:GPU制造/云计算、大模型开发、AI应用。

         

 

其中,底层服务商通过销售算力芯片硬件和提供云服务器业务,赚取丰厚的利润。而AI应用层企业则处在最靠近市场和变现的位置,将AI融入到自动驾驶、医疗诊断、智能家居等各种场景,凭借AI打造产品力,也能获得不错的溢价。

         

 

相比之下 ,只做大模型的AI公司,既要受到上游基础设施的制约,后有AI应用厂家落地的卡位,且研发成本高、技术门槛高,迭代竞争激烈,从而导致这一环节出现利润低、变现慢的窘境。以自动驾驶技术为例,英伟达通过提供高性能GPU,占据产业链的高地;特斯拉、Waymo等,通过自动驾驶应用的开发,同样创造了巨大的商业价值。但一直默默“奉献”的底层大模型,却获利甚微,还面临着高成本和激烈竞争的巨大压力。

         

 

在过去,GPU厂商(如英伟达、AMD)、大模型厂商(如Open AI),应用端厂商(如苹果、微软、特斯拉),他们在自己的行业内各自为战,展开竞争。如今,他们开始尝试“抱团”,对产业链进行垂直整合:产业链上游的英伟达参与到了中游的大模型公司Open AI的融资,产业链下游的微软、苹果更是与Open AI深度绑定。中国的华为、阿里、腾讯、蔚小理等企业从芯片制造,到大模型训练,再到实际应用,也开始逐步对AI进行产业链层面的垂直整合。

         

 

事实上,移动互联网时代的苹果,新能源车时代的比亚迪,都曾通过这种一体化战略大大加强自己在行业内竞争力。这种成功的经验或许同样能够为AI时代的企业们带来启示:“谁能够率先将芯片、算力、数据、模型、应用这五点统一,谁就能够在这场科技革命浪潮中最先摘到‘低垂的果实’。”


美股研究社 美股研究社,一个专注研究美股的平台,专业的美股投资人都在这.想了解美国股市行情、美股开户、美股资讯、美股公司;
评论 (0)
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 349浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 473浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 727浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 342浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 709浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 118浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 599浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 416浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 528浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 78浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 243浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦