----追光逐电 光赢未来----
一个晶圆要经历三次的变化过程,才能成为一个真正的半导体芯片:首先,是将块儿状的铸锭切成晶圆;在第二道工序中,通过前道工序要在晶圆的正面雕刻晶体管;最后,再进行封装,即通过切割过程,使晶圆成为一个完整的半导体芯片。可见,封装工序属于后道工序,在这道工序中,会把晶圆切割成若干六面体形状的单个芯片,这种得到独立芯片的过程被称作做“切单(Singulaton)”,而把晶圆板锯切成独立长方体的过程则叫做“晶片切割(Die Sawing)”。近来,随着半导体集成度的提高,晶圆厚度变得越来越薄,这当然给“切单”工艺也带来了不少难度。
前道和后道工序通过各种不同方式的互动而进一步发展:后道工序的进化可以决定晶圆上die单独分离出的六面体小芯片)的结构和位置,以及晶片上焊盘(电连接路径)的结构和位置;与之相反,前端工艺的进化则改变了后端工艺中的晶圆背面减薄和“晶片切割(Die Sawing)”晶圆的流程和方法。因此,封装的外观日益变得精巧,会对后端工艺带来很大的影响。而且,根据包装外观的变化,切割次数、程序和类型也会发生相应的变化。
划片切割(Scribe Dicing)
早期,通过施加外力切割的“掰开(Breaking)”是唯一可以把晶圆分割成六面形的Die的切割法。然而,这种方法却存小芯片边缘剥落(Chipping)或产生裂纹等弊端。而且,由于没有完全去除金属表面的毛刺(Burr:切割时产生的一些残渣),所以切割表面也非常粗糙。
为了保护晶圆在切割过程中免受外部损伤,事先会在晶圆上贴敷胶膜,以便保证更安全的“切单”。“背面减薄(Back Grinding)”过程中,胶膜会贴在晶圆的正面。但与此相反,在“刀片”切割中,胶膜要贴在晶圆的背面。而在共晶贴片(Die Bonding,把分离的芯片固定在PCB或定架上)过程中,贴会背面的这一胶膜会自动脱落。切割时由于摩擦很大,所以要从各个方向连续喷洒DI水。而且,叶轮要附有金刚石颗粒,这样才可以更好地切片。此时,切口(刀片厚度:凹槽的宽度)必须均匀,不得超过划片槽的宽度。
很长一段时间,锯切一直是被最广泛使用的传统的切割方法,其最大的优点就是可以在短时间内切割大量的晶圆。然而,如果切片的进给速度(Feeding Speed)大幅提高,小芯片边缘剥落的可能性就会变大。因此,应将叶轮的旋转次数控制在每分钟30000次左右。可见,半导体工艺的技术往往是通过很长一段时间的积累和试错,慢慢积累的秘诀(在下一节有关共晶贴片的内容上,将讨论有关切割与DAF的内容)。
激光切割(Laser Dicing)
晶圆级晶片尺寸封装(WLCSP,Wafer Level Chip Scale Package)工艺主要采用激光切割法。采用激光切割可以减少剥落和裂纹等现象,从而获得更优质的芯片,但晶圆厚度为100μm以上时,生产率将大打折扣。所以,多用在厚度不到100μm(相对较薄)的晶圆上。激光切割是通过在晶圆的划片槽上施加高能量的激光来切割硅。但使用传统的激光(Conventional Laser)切割法,要在晶圆表面上事先涂层保护膜。因为,在晶圆表面加热或照射激光等,这些物理上的接触会晶圆表面会产生凹槽,而且切割的硅碎片也会粘附在表面上。可见,传统的激光切割法也是直接切割晶圆表面,在这一点上,它与“刀片”切割法有相似之处。
激光隐形切割(SD, Stealth Dicing)则是先用激光能量切割晶圆的内部,再向贴附在背面的胶带施加外部压力,使其断裂,从而分离芯片的方法。当向背面的胶带施加压力时,由于胶带的拉伸,晶圆将被瞬间向上隆起,从而使芯片分离。相对传统的激光切割法SD的优点为:一是没有硅的碎屑;二是切口(Kerf:划片槽的宽度)窄,所以可以获得更多的芯片。此外,使用SD方法剥落和裂纹现象也将大大减少,这至关定切割的整体质量。因此,SD方法非常有望成为未来最受青睐的一项技术。
申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。
----与智者为伍 为创新赋能----
联系邮箱:uestcwxd@126.com
QQ:493826566