收藏!物联网设备电源设计指南

原创 亚德诺半导体 2024-10-10 18:00


随着物联网设备越来越多地用于工业设备、家居自动化和医疗应用中,通过减小外形尺寸、提高效率、改善电流消耗,或者加快充电时间(对于便携式物联网设备)来优化这些设备的电源管理的压力也越来越大。所有这些都必须以小尺寸实现,既不能影响散热,也不能干扰这些设备实现无线通信。

物联网应用领域存在多种表现形式,它通常是指一种智能联网电子设备,可能由电池供电,并将预先计算的数据发送给基于云的基础设施。它利用嵌入式系统集合体(例如处理器、通信IC和传感器)来收集、响应数据,并将数据发送回网络的中心位置或其他节点。这可以是任何东西,例如简单的温度传感器,用于向中央监控区域报告室温,或者设备健康监测器,用于跟踪监测价格高昂的工厂设备的长期健康状况。


最终,开发这些设备是为了解决特定挑战,无论是为了自动执行通常需要人工干预的任务,比如家居或楼宇自动化,还是在工业物联网应用中提高设备的可用性和使用寿命,如果考虑在基于架构的应用(例如桥梁)中实现状态监控应用,甚至可以提升安全性。


应用示例
物联网设备的应用领域几乎没有止境,每天都会考量新的设备和使用情况。基于智能发射器的应用收集有关其所处环境的数据,以做出控制温度、触发警报或自动执行特定任务的相关决策。此外,煤气表和空气质量测量系统这类便携式仪器可以通过云向控制中心提供准确的测量结果。GPS跟踪定位系统是另一种应用,例如可以通过智能耳标追踪集装箱牲畜(例如奶牛)。这些只是云连接设备中的一小部分,其他领域包括可穿戴医疗健康应用和基础设施检测应用。


工业物联网应用是一个重要的增长领域,它是以智能工厂为中心的第四次工业革命的一部分。许多物联网应用最终都在尝试尽可能实现工厂自动化,无论是通过使用自动导引车(AGV)、智能传感器(例如RF标签或压力表),或者是部署在工厂周围的其他环境传感器。



ADI认为,物联网主要侧重五大领域:

  • 智能健康——支持临床水平和消费者应用的生命体征监测应用。

  • 智能工厂——侧重于通过提高工厂的快速响应能力、使工厂更灵活、更精简,以构建工业4.0。

  • 智能楼宇/智慧城市——利用智能传感技术来执行楼宇安全、车位占用检测,以及实施温度和电气控制。

  • 智能农业——利用现有技术实现自动化农业并提升资源利用效率。

  • 智能基础设施——基于状态监控技术来监测移动和结构健康。


物联网设计挑战

在不断发展的物联网应用领域,设计人员面临哪些主要挑战?这些设备或节点大多数是在事后安装的,或安装在难以接近的位置,因此无法为其供电。这意味着需要完全依赖电池和/或能量收集方式供电。


在大型工厂周围传输电力可能成本高昂。例如,假设要为工厂中的偏远物联网节点供电。如果通过部署新电缆为该设备供电,不仅实施成本高昂,而且极为耗时,所以一般都会选择使用电池或能量收集方式为这些偏远节点供电。


依赖电池供电就需要遵循严格的功率预算,以确保尽可能延长电池寿命,这必然会影响设备的总拥有成本。使用电池的另一个缺点就是在电池报废之后需要更换电池。这包括电池本身的成本,以及更换电池和弃置旧电池的高额人力成本。


另外还要考虑电池的成本和尺寸,这往往会导致对电池过度设计,以确保其拥有足够容量,从而满足电池的使用寿命要求,一般是要求超过10年。但是,过度设计会额外增加电池的成本和尺寸,因此,我们不仅要优化功率预算,还要尽可能减少能源使用,使电池尺寸足够小,同时仍能够满足设计要求。

为了方便讨论,我们将物联网应用中的电源分为以下三种情况,这些电源可以单独使用,或根据应用需要组合使用。
  • 使用不可充电电池(原电池)的设备
  • 需要使用可充电电池的设备
  • 利用能量收集来提供系统电源的设备
原电池应用

大家都知道各种不同的原电池应用,这些也称为不可充电电池应用。主要用于偶尔需要用电的应用,也就是说,设备偶尔通电,然后重新进入深度睡眠模式,所以耗电很少。使用原电池供电的主要优势在于:它提供高电能密度,设计简单(因为无需包含电池充电/管理电路),以及成本较低(因为电池更便宜,所需的电子器件更少)。它们非常适合低成本、低功耗的放电应用,但是,因为这些电池的寿命有限,所以不太适合功耗略高的应用,而更换电池会产生额外的电池成本以及更换电池的人工成本。


想象一下拥有许多节点的大型物联网装置。当您请技术人员现场更换一台设备的电池时,通常会一次性更换所有电池,以节省人工成本。毫无疑问,这是一种浪费,只会加剧全球浪费问题。更重要的一点,不可充电电池只提供了最初制造电池所用电量的2%。约98%的电量浪费使得这种电源的经济效益非常低。


显然,它们在基于物联网的应用中确有一席之地。相对较低的初始成本使其非常适合低功耗应用。它们提供多种类型和尺寸选择,而且无需使用额外的电子器件来进行充电或管理,所以是简单的解决方案。


从设计角度来看,关键挑战在于如何充分利用这些小型电源提供的电力。为此,我们需要花费大量时间来制定功率预算计划,以确保尽量延长电池的使用寿命,设计目标一般是10年。


对于原电池应用,我们可以考虑使用微功耗产品系列中的两款产品:LTC3337 微功耗库仑计数器和 LTC3336 微功耗降压稳压器,如图1所示。


图1.LTC3337和LTC3336应用电路。


LTC3336是一款低功耗DC-DC转换器,输入电压可高达15 V,峰值输出电流可编程。输入可以低至2.5 V,因此非常适合电池供电应用。在空载状态下调节时,静态电流可能非常低,仅65 nA。随着DC-DC转换器不断改进,可轻松设置并用于新设计中。输出电压可根据OUT0至OUT3引脚的连接方式进行编程设置。

LTC3336的配套器件是LTC3337,这是一款微功耗原电池健康状态监视器和库仑计数器。这是另一款可轻松用于新设计的产品,只需按照峰值电流要求(在5 mA至100 mA范围内)连接IPK引脚。根据选定的电池进行一些计算,然后填入基于选择的峰值电流推荐的输出电容,具体参见数据手册。


最终,为功率预算有限的物联网应用找出合适的配套设备。这些产品能够准确监测原电池的电量使用情况,并将输出高效转换为可用的系统电压。

可充电电池应用

现在,我们来看看可充电应用。对于需要更高功率或更高放电的物联网应用,原电池更换频率显然不合适,可充电电池将是一个不错的选择。电池的初始成本以及充电电路使可充电电池应用的成本更高,但在需要频繁放电和充电的高放电应用中,这种成本是合理的,很快能实现回本。


根据所使用的化学物质,可充电电池应用的初始电量可能比原电池低,但从长远来看,效率更高,总体来说,浪费更少。根据电力需求,还可以选择电容或超级电容存储,但它们更多用于短期后备存储。


根据所使用的化学物质,电池充电涉及几种不同的模式和工作特性。例如,图2中显示的锂离子电池的充电特性曲线。底部为电池电压,纵轴表示充电电流。


图2.充电电流与电池电压的关系。

当电池严重放电时,如图2左侧所示,充电器需要具有足够智能,让电池进入预充电模式,使电池电压缓慢增加到安全水平,然后进入恒流模式。在恒流模式下,充电器将设定的电流输入电池,直到电池电压升至设定的浮充电压。


设定的电流和电压均取决于所用的电池类型,充电电流受充电速率和所需的充电时间限制,浮充电压则基于保持电池安全的阈值。系统设计人员可以根据系统需要,通过稍微降低浮充电压来帮助延长电池的使用寿命,与针对电源的考量一样,就是进行权衡和取舍。达到浮充电压之后,充电电流会降至零,并且会根据终止算法使该电压保持一段时间。


图3显示了3电池应用随时间变化的行为特性曲线。红色线条表示电池电压,蓝色线条表示充电电流。它在恒流模式下启动,最高电流达2 A,直至电池电压达到12.6 V恒压阈值。充电器在终止定时器定义的时长内保持此电压,在本例中,时长为4个小时。许多充电器产品都支持编程设置该时间。

图3.充电电压/电流与时间的关系。


图4显示了一个不错的多功能降压型电池充电器( LTC4162)示例,它可以提供高达3.2 A充电电流,适合用于多种应用,包括便携式仪器仪表和需要更大电池或电池组的应用。它也可用于从太阳能充电。

图4.LTC4162:3.2 A降压型电池充电器。

能量收集应用
在使用物联网应用和其电源时,另一个可以考虑的选项是能源收集。当然,对于系统设计人员来说,需要考虑多方面因素,但免费能源的吸引力不能低估,尤其是电源要求不太严格且安装位置不能触及(即技术维修人员接触不到)的应用。


有许多不同的能源可供选择,也并非一定是户外应用才使用这种方式。太阳能以及压电或振动能量、热电能,甚至RF能量都是可以收集的(虽然其功率电平很低)。图5显示使用不同收集方法时相应的电能水平。
图5.能源和可用于各种应用的大致电能水平。

至于缺点,与之前讨论的其他电源相比,其初始成本更高,因为需要使用收集元件,例如太阳能电池板、压电接收器或珀尔帖效应元件,以及电能转换IC和相关的使能组件。另一个缺点是解决方案的整体尺寸更大,特别是与纽扣电池这样的电源相比。使用能量收集器和转换IC时,很难实现小型解决方案。


在效率方面,管理低电能水平也是一个难题。因为许多电源都是交流电源,所以需要整流。我们使用二极管来实现整流。设计人员必须考虑其本身特性导致的电能损失。在增大输入电压的情况下,这种影响会减弱,但并非始终如此。


大多数能量收集讨论中使用的器件来自 ADP509x 产品系列和 LTC3108,它支持广泛的能量收集来源,提供多条电源路径和可编程充电管理选项,可以提供极高的设计灵活性。可以使用多种能源为ADP509x供电,但也可以从电源中提取电能,用于为电池充电或为系统负载供电。从太阳能(室内和室外)到热电发电机(从可穿戴应用的人体热量或发动机热量中提取热能),任何能量来源都可用于为物联网节点供电。此外还可以从压电电源中获取电能,这增加了另一层灵活性,也是一种很不错的方式,(例如)可以从运行的电机中提取电能。

图6.能量收集应用中 ADP5090 的功能框图。

另一个能够通过压电电源供电的器件是 ADP5304,它以较低的静态电流(空载状态下一般为260 nA)运行,非常适合低功耗能量收集应用。数据手册中展示了一个典型的能量收集应用电路(参见图7),该电路由压电电源供电,用于为ADC或RF IC供电。


图7.ADP5304压电电源应用电路。

电能管理
在讨论功率预算有限的应用时,还应当考虑电能管理。在查看不同的电源管理解决方案之前,首先要针对应用执行功率预算计算。这个步骤很重要,可以帮助系统设计人员了解系统中使用的重要组件,以及它们分别需要多少电能。这会影响他们的决定,是选择原电池、可充电电池、能量收集,还是将这些选项组合使用。


在研究电能管理时,物联网设备收集信号并将其发送回中央系统或云端的频率是另一个重要因素,它对整体功耗有很大影响。一种常见手段是调整电源使用的占空比,或者延长唤醒设备使其收集和/或发送数据的时间间隔。


在尝试管理系统电能使用情况时,对每个电子设备使用待机模式(如果提供)也是一种非常有用的工具。

结论

与所有电子应用一样,尽早考虑电路的电源管理部分很重要。这在电源受限的应用(例如物联网)中更加重要。在设计阶段尽早制定功率预算有助于系统设计人员确定有效的路径和合适的设备,以应对这些应用带来的挑战,同时仍能够以小尺寸解决方案实现高能效。




👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦