【光电智造】自监督学习看这篇就够了!

今日光电 2024-10-01 18:01

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

我的博士课题是自监督学习(Self-supervised Learning)方法在计算机视觉表示学习领域的应用。作为一个新名词,自监督学习实际上与监督学习、非监督学习、半监督学习并没有本质上的鸿沟。

Ps: 我个人是不太喜欢科学界命名新技术的风格,给一些旧技术的新衍生冠以高大上的名字会让初学者对于这个领域感到很混乱,而事实上很多名词是交集或者子集的关系。我对于整个机器学习领域的技术分类迷茫了很久看了很多才慢慢理清楚,有机会给大家整理一个Node Map。当然,取名字是Hinton、Bengio这些大佬的事。。。万一哪天人家给RL改名叫Guess Learning/Try Learning >.<


01

自监督学习(Self-supervised Learning)是何方神圣?
1.1 自监督学习与监督学习、非监督学习的关系

样本特征在学习过程中至关重要。在简单的数据挖掘任务中,重要的数据特征是人工设计的。这些功能通常称为Hand-crafted features。在计算机视觉领域,这种类型的表示通常要求我们设计合适的函数以从图像或视频中提取所需的信息。但是,这些功能通常来自人类有关视觉任务中关键信息的经验,这导致手工制作的功能无法表示高级语义信息。例如,在早期工作中提出了各种视觉描述符,例如SIFT算子,HOG算子等等来表示有关对象边缘,纹理等的视觉信息。此外,由于设计函数的复杂度限制,这种类型的表示能力通常相对较低,并且提出新的hand-crafted features并非易事。

总而言之,hand-crafted features在早期视觉任务中取得了一些成功,但是随着问题的复杂性增加,它逐渐无法满足我们的需求。随着卷积神经网络的普及以及数据大小的指数增长,在完全监督的任务中,自动提取的表示形式逐渐取代了效率低下的hand-crafted features。在完全监督模型中,通过反向传播解决了以神经网络和监督损失函数为代表的全局优化问题。大量带注释的图像和视频数据集以及日益复杂的神经网络结构使诸如图像分类和对象检测之类的完全受监督的任务成为可能。之后,经过训练的模型的中间特征图通常包含与特定任务相关的语义有意义的信息,这些信息可以传递给类似的问题。

但是,手动数据注释是监督学习中必不可少的步骤,这是耗时,费力且有噪声的。与有监督的方法不同,无监督的方法不依赖于人类注释,并且通常集中在数据良好表示(例如平滑度,稀疏性和分解)的预设先验上。无监督方法的经典类型是聚类方法,例如高斯混合模型,它将数据集分解为多个高斯分布式子数据集。然而,非监督学习学习由于预设先验的一般性较差而不太值得信赖,在某些数据集(例如非高斯子数据集)上选择将数据拟合为高斯分布可能是完全错误的。

自我监督方法可以看作是一种具有监督形式的特殊形式的非监督学习方法,这里的监督是由自我监督任务而不是预设先验知识诱发的。与完全不受监督的设置相比,自监督学习使用数据集本身的信息来构造伪标签。在表示学习方面,自我监督学习具有取代完全监督学习的巨大潜力。人类学习的本质告诉我们,大型注释数据集可能不是必需的,我们可以自发地从未标记的数据集中学习。更为现实的设置是使用少量带注释的数据进行自学习。这称为Few-shot Learning。

1.2 自监督学习的主要流派

在自监督学习中,如何自动获取伪标签至关重要。根据伪标签的不同类型,我将自我监督的表示学习方法分为4种类型:基于数据生成(恢复)的任务,基于数据变换的任务,基于多模态的任务,基于辅助信息的任务。这里简单介绍第一类任务。事实上,所有的非监督方法都可以视作第一类自监督任务,在我做文献调研的过程中,我越发的感觉到事实上非监督学习和自监督学习根本不存在界限。

所有的非监督学习方法,例如数据降维(PCA:在减少数据维度的同时最大化的保留原有数据的方差),数据拟合分类(GMM: 最大化高斯混合分布的似然), 本质上都是为了得到一个良好的数据表示并希望其能够生成(恢复)原始输入。这也正是目前很多的自监督学习方法赖以使用的监督信息。基本上所有的encoder-decoder模型都是以数据恢复为训练损失。


02

图片上色与视频预测

2.1 什么是基于数据恢复的自监督任务?

第一类任务也是使用最多的一类任务:数据生成任务。
自监督学习的出发点是考虑在缺少标签或者完全没有标签的情况下,依然学习到能够表示原始图片的良好有意义的特征。那么什么样的特征是良好有意义的呢?在第一类自监督任务——数据恢复任务中,能够通过学习到的特征还原生成原始数据的特征,我们认为是良好有意义的。看到这里,实际上大家能够联想到自动编码器类的模型,甚至更简单的PCA。实际上,几乎所有的非监督学习方法都是以这个原则作为基础的。现在十分流行的深度生成模型VAE(后面我会写一篇文章住专门介绍VAE,还在草稿箱里待着。。。)甚至更火的GAN也可以归为这一类方法。

GAN的核心是通过Discriminator去缩小Generator distribution和real distribution之间的距离。GAN的学习过程不需要人为进行数据标注,其监督信号也即是优化目标就是使得上述对抗过程趋向平稳(Goodfellow 想出这个点子真的天才)。

这里我们以两篇具体的paper为例子,介绍数据恢复类的自监督任务如何操作实现。我们的重点依然是视觉问题,这里分别介绍一篇图片上色的文章和一篇视频预测的文章。其余的领域比如NLP,其本质是类似的,在弄清楚了数据本身的特点之后,可以先做一些低级的照猫画虎的工作。

2.2 图片色彩恢复——瓢虫是红色的吗?

设计自监督任务时需要一些巧妙的思考。比如图片色彩恢复任务,我们已有的数据集是一张张的彩色图片,假如去掉色彩,作为感性思考者的我们,是否能够从黑白图片中显示的内容推测原来图片真实的色彩?对于一个婴儿来说可能很难,但是对于我们来说,生活的经历告诉我们瓢虫应当是红色的(下图第二行中)。我们是如何做出预测的?事实上,我们通过观察大量的瓢虫,在脑中建立了从“瓢虫”到“红色”的映射。

把这个学习过程推广到我们的模型上,在给定黑白输入的情况下,我们用正确的彩色的原始图像作为学习的标签,从而模型会试着理解原始黑白图像中“每个区域”是“什么”进而去建立从是“什么”到“不同颜色”的映射。

当我们完成训练,模型的中间层feature map就得到了类似人脑对于“瓢虫”以及其他物体的记忆,以向量的形式。

2.3 视频预测——下一秒你会在哪里?

一般来说,视觉问题分成图片和视频两大类,图片数据可以认为具有i.i.d特性,而视频是由多个图片帧构成的,可以认为具有一定的Markov dependency,时序关系是他们之间最大的不同。比如最简单的思路,利用CNN提取单张图片特征可以做图片分类,再加入一个RNN或者LSTM去刻画Markov Dependency,便可以应用到视频上。

视频预测任务十分的耿直。怎么形容呢,他就是那种,你知道的,我们说视频中帧与帧之间存在时空连续性。类似的,人类会利用这种帧与帧之间的连续性,当我们看电影时突然按了暂停,下一秒下几秒会发生什么实际上我们是可以预测的。
同样,把这个学习过程推广到我们的模型上,在给定前一帧或者前几帧的情况下,我们用后续的视频帧作为学习的标签,从而模型会试着理解给定视频帧中的语义信息(发生了啥?)进而去建立从当前到未来的映射关系。

References

R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in ECCV, pp. 649–666, Springer, 2016.

https://arxiv.org/abs/1603.08511

N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsuper- vised Learning of Video Representations using LSTMs,” in ICML, 2015.

https://arxiv.org/abs/1502.04681

03

Rotation Prediction
第二类自监督学习任务——基于数据变换的任务。事实上,人们现在常常提到的自监督学习通常指的是这一类自监督任务,我个人认为是比较狭义的概念。
用一句话说明这一类任务,事实上原理很简单。对于样本    ,我们对其做任意变换,则自监督任务的目标是能够对生成的    估计出其变换    的参数 。
下面介绍一种原理十分简单但是目前看来非常有效的自监督任务——Rotation Prediction。

给定输入图片    ,我们对其做4个角度的旋转,分别得到    ,并且我们知道其对应的变换角度分别为    。此时,任务目标即是对于以上4张图片预测其对应的旋转角度,这里每张图片都经过同样的卷积神经网。
我始终坚持的观点是自监督学习需要动机明确,这里我们能做的任意变换应当是对目标有益的。比如在Rotation Prediction中,作为人类的我们只有在理解了图片中是一只鸟站在枝头之后才知道X_0的旋转角度应当是    。那么我们有理由相信,当模型能够做出同样正确的判断时,其中间的feature map必然携带了有意义的图片语义信息。
原文链接在此:
https://arxiv.org/pdf/1803.07728.pdf

参考地址:

https://zhuanlan.zhihu.com/p/125721565

https://zhuanlan.zhihu.com/p/129067097

https://zhuanlan.zhihu.com/p/136108863

声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。
来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 84浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 139浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦