自动驾驶大模型算法如何助力端到端顺利落地?

智驾最前沿 2024-09-30 08:40
2024 年 3 月 FSD V12.3 推出,解决复杂场景能力大幅提升,驾驶体验平顺丝滑拟人化程度高。FSD 开始从“测试版”晋级为“监督版”,并面向所有北美车主免费试用 30 天。随后马斯克在社交媒体上表示将在 8 月 8 日推出 Robotaxi 功能,自动驾驶即将真正带来汽车商业模式的变革。
FSDV12 是一个端到端算法,对算力和数据需求激增,马斯克表示到 2024 年底将累计投入 100 亿美金在算力和数据领域,到 2024 年底总算力规模有望突破 100EFlops,目前 FSD 的累计行驶里程数已经超过 10 亿英里,特斯拉快速推进探索自动驾驶“无人区”。
相比传统的感知、规控等模块拼接而成的模块化算法,端到端算法采用整体化的神经网络,模型的一端输入感知信息,另一端直接输出轨迹或者控制信号。
端到端算法优势显著:
(1)信息无损传递,减少人为偏见,灵活度大幅提升;
(2)面向整体驾驶目标进行全局优化;
(3)从“行为”学习“行为”,驾驶行为更加拟人化;
(4)数据驱动,更易发挥规模法则;
(5)精简计算任务,减少级联误差,降低延迟。
端到端算法形成几大方向:由多个神经网络模块拼接而成的端到端、单一神经网络构建成的端到端、以及以大语言模型为核心的端到端算法。业界和学界对各类路线作出诸多探索,自动驾驶迎来大模型时代。

FSD V12 效果惊艳,Robotaxi 迈向现实
1.1、 特斯拉 FSD V12.3 登场,自动驾驶辅助功能推向全量用户
特斯拉 FSD V12.3 登场,智驾时代更进一步。早在 2023 年 5 月,马斯克即在社交媒体上表示,FSDV12 将是一个视频输入+控制输出的端到端的自动驾驶算法;2023 年底,FSD V12 版本开始在北美的特斯拉车辆中试用;2024 年 3 月 12 日,FSD V12.3 推出,体验跨越式提升;随后,FSD 去掉“Beta”改为“Supervised”并开始向所有北美用户开放,允许免费试用 30 天,另外马斯克还要求北美地区销售必须带客户短途试驾 FSD 才能交车。
2023 年 4 月,FSD 的订阅价格从 199 美元降低至 99 美元,买断价格从 12000 美元降低至 8000 美元。价格下探叠加向全美用户开放,表明公司马斯克已经对 FSD 功能的完善度相当自信,意味着将有百万数量级的用户有机会体验到自动驾驶辅助功能,有望显著增加 FSD 的曝光度以及订阅率,同时大规模试用也将为 FSD 收集可观的数据,助力功能完善。
1.2、 端到端算法加持,驾驶体验显著提升
特斯拉 FSDV12.3 推出以来,驾驶体验丝滑优雅,获得市场广泛好评。具体而言,我们看到几个方面的驾驶体验显著改善。
(1)解决复杂场景的能力大幅提升:例如可顺滑处理无保护左转和环岛等场景,相比 V11 大幅进步;无缝处理施工路段等复杂场景;对人类意图的理解加深,部分场景可以识别手势;可以根据其他车辆行驶状况判断当前场景是否可以通行,接管次数大幅降低。
(2)驾驶体验丝滑平顺拟人化:转弯、红绿灯启停无顿挫感,加减速拟人化;遇到开双闪的车辆占道会毫不犹豫变道绕行,流畅自然;遇到周围骑行者、行人绕行时从容淡定,绕行幅度拟人化;遇到其他车辆倒车,会留足空间,驾驶具有“礼貌性”;拟人化程度高,经常让乘客难以区分到底是人还是算法在执行驾驶行为。
(3)新增部分功能:部分场景可以掉头,抵达目的地后可以自主寻找停车处停车,不依赖导航。当然当前版本也会出现一些问题如距离道路边缘近,容易出现剐蹭,对交通规则的遵守度弱,以及其他车辆意图判断仍需提升,无法倒车等问题。未来,随着算法的迭代,小的问题有望逐步修复。

FSDV12 甚至可识别自行车骑手的手势并减速 FSD V12 可以从 0 时速启动

1.3、 特斯拉推动,Robotaxi 有望迈向现实
随着自动驾驶性能的进一步提升,Robotaxi 有望成为现实。特斯拉关于Robotaxi 的规划早在 2016 年发布的《宏图计划第二部分》(Master Plan Part Deux)中即出现,后续马斯克亦在多次财报电话会议中提及。
具体而言,一旦特斯拉实现了完全自动驾驶,将创立一个共享出行平台,通过特斯拉车辆来实现 Robotaxi 运营。特斯拉建立自有车队,同时特斯拉车主也可将自己的车辆加入到共享车队,后续特斯拉从每个订单中抽成。
Robotaxi 将与造车业务实现协同,其运行数据将成为整个特斯拉数据闭环的一部分,最大化提升自动驾驶的盈利能力,此外闲置车辆可以赚钱将提升车辆的使用效率和特斯拉车辆的吸引力。
2023 年 4 月,马斯克在社交媒体上宣布特斯拉将在 2024 年的 8 月 8 日推出 Robotaxi。目前,自动驾驶功能的完善度将是 Robotaxi 能否实现的核心,Robotaxi 有望为自动驾驶打开新的成长空间。
1.4、 算力、数据全面加速,特斯拉加足马力快速推进
端到端开创特斯拉自动驾驶新时代。对端到端自动驾驶而言,马斯克在多个场合表示,模型仅仅依靠神经网络构建,并未加入环形交叉路、红绿灯等场景和元素,对场景的理解和驾驶行为完全依靠模型自身通过大量的人类驾驶视频训练而学习到。
和大语言模型类似,规模法则(Scaling Law)在自动驾驶领域也效果凸显,对端到端算法来说,算法之外,更迫切的是需要海量的数据和算力将模型的能力推升到更高水平。2024 年初,马斯克在多个场合表示,算力制约了特斯拉 FSD 功能的迭代,而在 3 月开始,马斯克表示算力并不在成为限制,FSD 的迭代将大大加快。
回顾 FSD 发展历史,算力累积伴随 FSD 迭代,并进一步强化特斯拉竞争力。根据特斯财报公布的算力增长曲线,我们可以观察到,在 FSD V11 以及之前版本的时代,算力基本在等效 5000 片 H100 的水平之下,在 FSD V12 也就是端到端算法推出前后,算力开始阶跃式提升至约等效 15000 片 H100 水平,此后算力进一步快速拉升至等效 3.5 万片 H100 左右,时间节点大约与 FSD V12.3 版本推出对应,此时特斯拉开始向所有订阅用户推送 V12 以上版本,并去掉 Beta 改为 Supervised,同时为所有用户开启 FSD 试用 1 个月。
在 2024Q1 财报电话会议上,马斯克表示,2023 年底将会有等效 8.5 万片 H100 的算力投入使用,与此前公布的在 2024 年将达到 100Eflops 算力对应。可以观察到的是,伴随端到端的落地,特斯拉对算力的需求出现了近乎数量级的提升,这也反过来帮助其算法实现更加快速的迭代。
算力补足的特斯拉 FSD 迭代速度显著加快,每个新版本都带来性能的大幅提升。特斯拉 FSD 从 V12 版本推出到 V12.3 共推出 7 个迭代的衍生版本,花费了近 4个月时间,而从 V12.3 到 V12.3.6 推出的 8 次版本迭代所花费的时间仅有 1 个半月左右。
功能方面,V9 到 V11 时代更多的是一些微小的性能提升和用户开放规则的放宽。而 V12 时代以来,新版本的功能实现大跨步提升,V12.3 甚至可以做到识别手势,而近期马斯克在社交媒体上表示,即将推出的版本中 FSD 将会把自动驾驶和自主泊车结合,实现“真正的代客泊车”,同时将去掉手握方向盘检测,此外在面临最新场景时也将有更好的表现,如驶入狭窄封闭道路中需要倒车来寻找新的路线等。
践行规模法则,特斯拉快速推进探索自动驾驶“无人区”。马斯克曾经在财报会中提到训练模型所需的数据:“100 万个视频 Case 训练,勉强够用;200 万个,稍好一些;300 万个,就会感到 Wow;到了 1000 万个,就变得难以置信了。”而训练数据仍需来自于优质的人类驾驶行为。
对特斯拉而言,目前有数百万辆量产车辆可以实现数据收集,同时亦有大量订阅 FSD 的用户可以反馈 FSD 使用过程中的问题。特斯拉用户带来的 FSD 的累计行驶里程数加速增长,从 2023Q1 的 1.5 亿英里,提升至 2023Q3 的 5 亿英里,2023Q4 达到接近 8 亿英里,2024 年 4 月突破 10 亿英里。
在 2024 年 4 月马斯克表示到 2024 年在训练算力、海量的数据闭环体系以及海量视频存储上将特斯拉将累计投入超过 100 亿美元。特斯拉一步步探索自动驾驶的“无人区”,将规模和能力推升到极致。

端到端助力自驾算法“融会贯通”,大模型时代到来
2.1、 端到端算法将驾驶行为“融会贯通”
端到端自动驾驶算法实现对驾驶行为的“融会贯通”。在传统模块化的自动驾驶算法中,人类工程师依靠自己的经验将驾驶问题拆解和提炼为一些简单的过程,通常情况下自动驾驶算法分为感知、预测、规划控制几个部分,以流水线式的架构进行拼接,模块之间会以人为定义的信息表征方式进行信息传递,进而实现驾驶任务。端到端算法则采用一个整体化的神经网络,在模型的一端输入感知信息,另一端直接输出轨迹或者控制信号,将整个驾驶行为“融会贯通”。

端到端算法将传统的感知、预测、规划等算法模块融为一体
2.2、 端到端算法优势显著但落地难度加大
2.2.1、 端到端的自动驾驶算法优势显著:
(1)信息无损传递,减少人为偏见,灵活度大幅提升且泛化性增强
模块化算法以人类定义的抽象结果作为中间产物,如感知模块将外部的汽车、行人、道路等元素简化为检测框(Bounding box)或者占用栅格以及车道线等;而预测和规划模块则根据上游感知提供的信息,将复杂的世界抽象为几类简单的场景,分别输出轨迹点和驾驶路径和行为。
这实际上会造成信息损失,当人为定义的抽象的指标并不能很好的描述场景时,下游模块只能根据有限的信息做判断,造成错误的结果,体验上来讲会造成模型对复杂场景的处理能力不足,泛化性差,决策僵硬。端到端算法则可以将各个模块几乎所有信息传递给下游模块,并且由下游模块来决定使用哪些上一环节的信息。
例如当经过侧面有障碍物遮挡的小巷子时,如果人类司机观察到障碍物后面有汽车发出的灯光,可能会提前减速。模块化的算法由于感知端只检测障碍物、车道线等内容,可能会丢掉光照变化的信息,规控算法则无法提前规避侧向来车;而对端到端算法来说,全部传感器感知到的数据都会被收集,只要有足够的数据,模型会自己学习到灯光和驾驶员行为的关联进而拟人化的处理相应的问题。
(2)面向整体驾驶目标进行全局优化
在模块化算法中,每个模块都以人类工程师定义的目标进行优化,各个部分分而治之,可能出现局部最优但整体效果差的情况,如目标检测的指标是平均精度(mAP),规控算法的检测指标要考虑碰撞率、任务完成率等。
端到端自动驾驶则对整个自动驾驶流程进行优化,神经网络的链式法则可以从输出端(控制)向输入端(感知)贯通,输出结果可以将误差依次反向传播给所有模块,以最小化整体损失函数为目标,更加准确地更新每个网络层中的参数,以使体验达到最优状态。(好比考试的时候,答案中 ABCD 的占比是一样的,但如果不通篇看题目,会丢掉这一重要的全局信息)在特斯拉 FSDV12 版本的视频中,有些时候会出现规控算法不会完全按照感知呈现的结果执行驾驶行为,或许亦体现了全局优化的优势(规控会根据自己的经验忽略掉一些感知出现的问题如误检等)。
(3)从“行为”学习“行为”,驾驶变得更加丝滑和拟人化。
这一优势也可以被视为用基于神经网络的算法取代基于规则为主算法带来的优势。吴新宙在 GTC 大会上提到,在传统自动驾驶开发过程中,工程师希望定义一些动作,通过建立状态机转换不同的动作来实现驾驶,而为了实现更好的驾驶效果,会引入越来越多的动作让机器的行为尽量像人。
但现实情况中,人类的行为难以通过一些离散的动作量化,规则无法定义什么是好的驾驶,甚至有些场景下并无最优决策,好比单纯用文字很难精确的描述一幅画的内容,何小鹏提到无限接近人的自动驾驶系统大概等效于 10 亿条规则,靠人类根本无法达到,因此传统算法产生的驾驶决策死板单调,拟人性差。
端到端或者说基于学习的规划让模型去学习人类行为,会大幅提升算法的适应性和灵活度,据元戎启行在 GTC 大会上介绍道,元戎的算法由于使用了端到端技术,不仅实现了舒适、高效,还会考虑后车需求,实现了“礼貌”,如主动让出右转车道,地面有水会减速慢行等。
(4)数据驱动,发挥规模法则,性能突破上限
采用端到端的自动驾驶算法,可以采用无监督的算法训练方式,省去标注环节,采用海量数据对模型进行训练,突破性能上限。而模块化算法则只能依靠工程师来手动处理长尾场景,随着数据量的增大,效率逐步下降。
(5)精简计算任务,减少级联误差,降低延迟,计算简洁高效
模块化算法中,从传感器收集信息开始就不可避免的出现误差,每个模块产生的误差如标定误差、定位精度误差、控制误差等会在模块间传递,最终会在下游累积,导致控制模块收敛难度加大。同时,模块之间的数据传输和计算都需要花费时间,导致整体算法延时较高,处理紧急场景能力弱。端到端算法则可避免上述情况出现。此外马斯克亦表示,通过使用端到端自动驾驶算法,特斯拉采用 2000 行代码代替了原本的 30 万行代码,整体算法框架变得简洁高效。
2.2.2、 端到端的自动驾驶算法亦存在可解释性差、落地难度大等问题
首先由于模型被构建为一个整体,无法像传统自动驾驶任务一样将中间结果进行分析,因此可解释性较差。其次由于算法完全依靠数据驱动,对数据的质量、数据分布等要求高,海量数据的获取或生成难度较大。
此外仿真验证也是端到端算法开发的难点,端到端算法更需要闭环评估,而在当前的技术条件下,缺乏良好的工具实现这一过程。最后对自动驾驶公司来说,算法的变化也意味着团队的调整,如何保持团队稳定性和量产经验的复用亦存在难点。
2.3、 端到端算法形成三大落地形式
多模态基础模型和大语言模型齐头并进,端到端自动驾驶算法百家争鸣。目前在自动驾驶端到端算法领域,大体形成几大方向:将不同功能的神经网络模块拼接形成端到端的自动驾驶算法(显式);依靠多模态基础模型实现端到端自动驾驶算法(隐式);以及依靠多模态大语言模型来实现自动驾驶。
2.3.1、 将多个神经网络拼接形成端到端算法(显式端到端):
显式的端到端自动驾驶即将原有的算法模块以神经网络进行替代并连接形成端到端算法。该算法包含可见的算法模块,可以输出中间结果,当进行故障回溯时可以一定程度上进行白盒化调整,训练时首先将每个模块分别训练,再将其拼接进行联合微调和训练,在数据量有限的情况下更容易收敛,且对于算法团队来说可以最大限度的继承此前模块化算法的开发能力,同时又具备端到端算法的优势,是目前诸多量产玩家青睐的方案。获得 2023 年 CVPR 最佳论文奖的 UniAD 模型亦采用此方法,可明显的观察到算法中仍包含感知、预测、占用预测、规划器等模块,并采用向量将模块连接,形成灵活的端到端架构。
2.3.2、 多模态基础模型+自动驾驶(隐式端到端):
隐式的端到端算法构建整体化的基础模型,利用海量的传感器接收的外部环境数据,忽略中间过程,直接监督最终控制信号进行训练。这类模型通常采用视觉或者多模态的信息作为输入,模型直接输出控制或者轨迹信号。
诸多玩家探索的自动驾驶世界模型在这里也有应用,即将视频、甚至文字信息送入模型,此后模型可以预测未来发生的事情以及所应该采取的行动,或者可以对所执行操作进行文字解释。
该方案理论上限更高,但训练难度高,收敛困难,对数据需求量大且可解释性差,模型调整也较为困难,量产玩家如 Wayve 以及学术界做出诸多探索。
Wayve 的端到端自动驾驶网络即采用单一的神经网络,直接输入感知数据,输车辆的驾驶动作,中间没有抽象化的感知结果输出,因此车辆上也不包含通常自动驾驶具备的“SR”(Situational Awareness,用来呈现自驾算法看到了什么)界面。

学术界百花齐放,世界模型成为玩家探索方向。近年世界模型受到市场关注,通过将外部环境的信息进行编码,由模型基于这些输入的语料来预测未来世界可能的状态,再通过不同的解码器解码出不同类型的信息,亦成为开发端到端自动驾驶算法的一大方式。以极佳科技和清华大学联合推出的 DriveDreamer 为例,模型主要采用注意力机制和 Diffusion 模型构建。
可对驾驶场景实现全面的理解,集成了多模态的输入数据如文本、视频、高精度地图、3D 检测框、驾驶行为等,可以实现可控的驾驶视频生成和预测未来的驾驶行为。同时 DriveDreamer 还可以与驾驶场景互动,根据输入的驾驶动作预测不同的未来驾驶视频。
2.3.3、 大语言模型+自动驾驶:
大语言模型采用海量的互联网数据进行自监督学习,可以对人类的问题给出优质反馈。大语言模型凭借其强大的认知能力,越来越多的被应用于驾驶场景。经过前期的预训练,模型已经吸收了驾驶相关的知识,并且广泛理解世界的“常识”,通过好的提示词即可激发出其相关的能力。
目前大语言模型可以被用于感知、预测、规划、整个驾驶环节、以及驾驶行为解释上。尤其是大语言模型可以对话的特性,让驾驶员可以对其做出的操作进行询问,增强模型的可解释性和驾驶的安全感。
目前工业界亦不乏大语言模型实践的先行者。端到端的坚定践行者 Wayve 公司,在 2023 年推出了 LINGO-1,该模型在各类视觉和语言数据源上进行训练,可以对感知、规划、推理等任务进行视觉问答,并可以对驾驶行为作出解释。升级版本的LINGO-1 甚至可以对道路语义信息进行分割。
在学术界大语言模型用作自动驾驶的方案更如雨后春笋。GPT-Driver、LanguageMPC、Drive like a Human、DriveLM、DriveGPT4 层出不穷。以港大和华为诺亚实验室等发表的文章中的 DriveGPT4 为例,它是一个使用 LLM 的可解释的端到端自动驾驶系统,通过将视频、语音提示、控制信号 Token 化之后送入大语言模型,语言模型生成对人类问题的相应回答以及控制信号,再经过编码等步骤还原成为文字和控制信息,即可对车辆实现控制。

-- END --

声明:内容源自网络,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,将及时处理!

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 107浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 295浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 147浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 194浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 213浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 144浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 49浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 111浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 202浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 115浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 184浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 185浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 78浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 189浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 193浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦