从混乱到清晰:嵌入式软件重构的实用技巧

嵌入式大杂烩 2024-09-29 11:38

原文:https://www.cnblogs.com/clover-toeic/p/3842758.html

具体的重构手段可参考《代码大全2》或《重构:改善既有代码的设计》,本文不再班门弄斧,而侧重重构时一些粗浅的“方法论”,旨在提高重构效率。

作者未采用重量级的重构工具,仅用到Source Insight的”Smart Rename”功能。也未使用CUnit等单元测试工具,而是通过在线调测和自动化测试保证代码的正确性。

一 背景

MDU系列产品从他处接手,OMCI模块相关人员含作者在内不过三五人。除新增功能的开发外,大量时间花费在处理遗留故障上。但该模块代码庞杂且可读性差,导致大家仅了解其“大概轮廓”,难以放心地使用和维护。

此外,忙碌容易使人迷失方向。主要的时间精力花费在故障处理上时,自然无暇考虑整改代码,从而陷入四处救火、疲于奔命的尴尬境地。

二 目标

重构的主要目的在于改善既有代码的设计,而不是修改缺陷、新增功能等。

重构可以是修改变量名、重新安排目录这样简单的物理重构,也可以是抽取子函数、精简冗余设计这样稍许复杂的逻辑重构。但均不改变现有代码的功能。

重构可以将意大利面条式的杂乱代码整理为千层饼式的整洁代码。整洁的代码更加健壮,因其便于建立完善的测试防护网。同时,新手老人均可放心地修改。

期望重构之后,代码逻辑一目了然,扩展和修改非常方便,出现故障时能迅速定位和修复。前人摔跤过的地方后人不再栽倒,前人思考出的成果后人可直接借用。总之,高度人性化,极大解放人力和脑力。

最初的想法是,通过重构部分流程和代码(代码先行),建立测试防护体系,生成阶段报告,展现代码质量(实例加数据)和故障收敛曲线。借助这样的报告,可望获得领导层的支持和宣贯,也有利于绩效考核。

三 实践

具体实践时,作者并未进行纯粹的“重构”,还兼做缺陷修改,并增加自动化测试等辅助功能。原则上,对既有代码注重重构,对新增代码注重复用。

3.1 代码研读

OMCI模块代码庞杂,分支众多,上手困难(据称半年勉强入门,一年才能熟练)。若不能有效掌握现有代码,后续难免被迫付出时间健康而又得不到项目认同(事实上,模块内发现的遗留故障源源不断)。反之,若能全面掌握现有代码,后续才可能通过反向工程、系统/代码恢复和重构等手段,将模块改造得更易开发和维护,最终解放编码者自己。

为提高代码研读效率,可采用分工阅读和代码注释的方法。

“分工阅读”是指将模块分为若干块子功能(如协议解析、告警、统计、二层、语音等),组内每人负责一块或几块,不定期地交流和轮值。

“代码注释”是指在学习代码过程中,随手注释代码(大至流程、函数,小至代码行),功能、意图、技巧、缺陷、疑问等均可(凡经过思考的地方都是可加注释之处)。其中“疑问”既可咨询兄弟产品同一模块的同事再转换为功能或意图,也可由其他注释者解答。

这样做的好处是:避免重复钻研;经验积累;可供量化。

代码可取产品最新版本,建立服务器公共代码目录(SVN管理更好)。注释时不要覆盖其他人的注释即可。

建议注释统一格式,便于识别和检索,形如”//>”。以下示出一个代码注释实例:

 case OMCI_ME_ATTRIBUTE_2: // Operational state
     if (attr.attr.ucOperationState != 0 && attr.attr.ucAdminState != 1//xywang0618> BUG: should be ucOperationState!
     {
         return OMCI_FUNC_RETURN_OUT_OF_RANGE;
     }
     break;

3.2 可读性

首先,规范变量、函数等命名。具体方法不再赘述。

其次,注释到位,尤其是全局变量和通用函数。举例如下:

/******************************************************************************
* 函数名称:  ByteArray2StrSeq
* 功能说明:  掩码字节数组字符串化
            该数组元素为掩码字节,将其所有值为1的比特位置转换为指定格式的字符串
* 输入参数:  pucByteArray: 掩码字节数组
            ucByteNum   : 掩码字节数组待转换的有效字节数目
            ucBaseVal   : 掩码字符串起始字节对应的数值
* 输出参数:  pStrSeq     :掩码字符串,以','、'-'间隔
            形如0xD7(0b'11010111)  ---> "0-1,3,5-7"
* 返 回 值:  pStr        :pStrSeq的指针备份,可用于strlen等链式表达式
* 用法示例:  INT8U aucByteArray[8] = {0xD7, 0x8F, 0xF5, 0x73};
            CHAR szSeq[64] = {0};
            ByteArray2StrSeq(aucByteArray, 4, 0, szSeq);
               ----> "0-1,3,5-8,12-19,21,23,25-27,30-31"
            memset(szSeq, 0, sizeof(szSeq));
            ByteArray2StrSeq(aucByteArray, 4, 1, szSeq);
               ----> "1-2,4,6-9,13-20,22,24,26-28,31-32"
* 注意事项:  因本函数内含strcat,故调用前应按需初始化pStrSeq
******************************************************************************/

CHAR *ByteArray2StrSeq(INT8U *pucByteArray, INT8U ucByteNum, INT8U ucBaseVal, CHAR *pStrSeq);

最后,整改晦涩难懂的代码。主要有两种手段:

1) 改写方法

以PON光路检测为例,底层接口提供的光功率单位为0.1uW,OMCI协议Test消息上报的光功率单位为0.002dBuW,而Ani-G功率属性单位则为0.002dBmW。

原有代码转换如下(为突出重点有所改编):

INT16S wRxPower = GetRxPowerInDot1uW(); //接收光功率
if(wRxPower < 1){
    wRxPower = 1;
}
/*0.1uw to 0.002dbm*/
dblVal = 10 * log10(wRxPower) - 40;
dblVal = dblVal * 500;
wRxPower = (INT16U)dblVal;
wRxPower  = (int)wRxPower*100;

/*opt pwr  0.00002db      X  * 0.00002*/
wRxPower = wRxPower + (30 * 500) * 100;
if(wRxPower < 0){
    val = (INT16U)((0 - wRxPower) / 100);
    val = (((~val) & 0x7fff) + 1) | 0x8000;
    wRxPower = val;
}
else{
    wRxPower = wRxPower / 100;
}

可见,原实现中转换关系非常晦涩难懂。其实借助1dBuW=10*lg(1uW)和1dBuW-1dBmW=30dB两个公式,经过简单的数学推导即可得到更简洁易懂的表达(为突出重点有所改编):

INT16S wRxPower = GetRxPowerInDot1uW(); //接收光功率
//Test单位0.002dBuW,底层单位0.1uW,转换关系T=(10*lg(B*0.1))/0.002=5000*(lgB-1)
wRxPower = (INT16S)(5000 * (log10((DOUBLE)wRxPower)-1));

//Ani-G功率属性单位0.002dBmW,Test结果单位0.002dBuW
//转换关系A(dBmW)*0.002 + 30 = T(dBuW)*0.002,即A=T-15000
INT16S wAniRxPwr = wRxPower - 15000;

注意,原实现中误认为Ani-G功率属性与Test结果的单位相同,新实现已修正该错误。

2) 封装函数

以实体属性的掩码校验为例,原有代码如下:

/*掩码初校验*/
if ((OMCIMETYPE_SET == vpIn->omci_header.ucmsgtype)
 || (OMCIMETYPE_GET == vpIn->omci_header.ucmsgtype))
{
    wMask = W(response.omcimsg.auccontent[0],response.omcimsg.auccontent[1]);
    usSupportMask = (1 << (OMCI_ATTRIBUTE_NUMBER - map.num))-1;
    if0 != (wMask & usSupportMask))
    {
        OmciPrint_warn("[%s] check mask warning: (meclass[%u], meid[%u], msgtype[%u], mask[0x%x], unsupport mask[0x%x])!\n\r",
                       FUNCTION_NAME, vpIn->omci_header.wmeclass, vpIn->omci_header.wmeid, vpIn->omci_header.ucmsgtype, wMask, usSupportMask);
    }
}

对usSupportMask赋值及判断的语句(第6~7行),用于校验掩码是否越界。为更具可读性,将其封装为如下函数:

/******************************************************************************
* 函数名称:  OmciIsMaskOutOfLimit
* 功能说明:  判断实体属性掩码是否越界(比特1数目超过属性数目)
* 输入参数:  INT16U wMeMask  :实体掩码
*           INT8U ucAttrNum :属性数目
* 输出参数:  NA
* 返 回 值:  BOOL
******************************************************************************/

BOOL OmciIsMaskOutOfLimit(INT16U wMeMask, INT8U ucAttrNum)
{
    //wMeMask     :mmmm mmmm mmm0 m000
    //wInvertMask :0000 0000 000i iiii
    INT8U wInvertMask = (1 << (OMCI_ATTR_MAX_NUM-ucAttrNum)) - 1;
    return (0 != (wMeMask & wInvertMask));
}

封装后的函数名恰当地起到“自描述”的作用。

3.3 在线调测工程

该产品作为嵌入式终端,需要在Linux系统中编译打包版本,然后将其下载到目标单板上运行。这种交叉编译方式对于单个模块的调试而言,效率无疑比较低下。

为提高调测效率,在Linux服务器搭建在线调测工程。即提取OMCI模块代码,稍作改造后直接在服务器上编译和运行。这样就可避免每次修改代码都要重启单板升级大版本,调测效率极高。

为使模块可独立运行,需要编写模拟接口以屏蔽底层调用,并裁减暂不必要的特性(如线程和通信)等。

3.4 模拟数据库

OMCI模块使用某内存数据库来管理需要持久化的实体信息,但该数据库代码内调用了大量平台相关的接口,不利于实现模块的在线调测。因此,作者研读源代码后编写了一个模拟数据库。该库仿照模块使用的几个原库接口及行为,模拟接口内部校验均增加错误信息打印,以便于排障。

此外,在数据库接口原语的基础上二次封装统一接口,一举消除模块内数据库操作代码的凌乱和重复。

3.5 自动化测试

没有测试保护网的重构,无异于没有血源的外科手术。

首先,公共接口和函数均提供有相应的测试函数,兼做示例和用例。如:

//Start of ByteArray2StrSeqTest//
VOID ByteArray2StrSeqTest(VOID)
{
    //ByteArray2StrSeq函数算法不甚优美和严谨,应多加测试验证,如有可能尽量优化。
    INT8U ucTestIndex = 1;
    INT8U pucByteArray[] = {0xD70x8F0xF50x730xB70xF00x000xE80x2C0x3B};
    CHAR pStrSeq[50] = {0};

    //Time Consumed(x86_gcc3.2.3_glibc2.2.5): 72us
    memset(pStrSeq, 0sizeof(pStrSeq));
    ByteArray2StrSeq(pucByteArray, 41, pStrSeq);
    printf("[%s] Result: %s, pStrSeq = %s!\n", __FUNCTION__, ucTestIndex++,
           strcmp(pStrSeq, "1-2,4,6-9,13-20,22,24,26-28,31-32") ? "ERROR" : "OK", pStrSeq);

    //Time Consumed(x86_gcc3.2.3_glibc2.2.5): 7us
    memset(pStrSeq, 0sizeof(pStrSeq));
    ByteArray2StrSeq(pucByteArray, 40, pStrSeq);
    printf("[%s] Result: %s, pStrSeq = %s!!!\n", __FUNCTION__, ucTestIndex++,
           strcmp(pStrSeq, "0-1,3,5-8,12-19,21,23,25-27,30-31") ? "ERROR" : "OK", pStrSeq);

    //Time Consumed(x86_gcc3.2.3_glibc2.2.5): 4us
    memset(pStrSeq, 0sizeof(pStrSeq));
    ByteArray2StrSeq(&pucByteArray[4], 21, pStrSeq);
    printf("[%s] Result: %s, pStrSeq = %s!\n", __FUNCTION__, ucTestIndex++,
           strcmp(pStrSeq, "1,3-4,6-12") ? "ERROR" : "OK", pStrSeq);

    //Time Consumed(x86_gcc3.2.3_glibc2.2.5): 4us
    memset(pStrSeq, 0sizeof(pStrSeq));
    ByteArray2StrSeq(&pucByteArray[6], 21, pStrSeq);
    printf("[%s] Result: %s, pStrSeq = %s!\n", __FUNCTION__, ucTestIndex++,
           strcmp(pStrSeq, "9-11,13") ? "ERROR" : "OK", pStrSeq);

    //Time Consumed(x86_gcc3.2.3_glibc2.2.5): 5us
    memset(pStrSeq, 0sizeof(pStrSeq));
    ByteArray2StrSeq(&pucByteArray[8], 21, pStrSeq);
    printf("[%s] Result: %s, pStrSeq = %s!\n", __FUNCTION__, ucTestIndex++,
           strcmp(pStrSeq, "3,5-6,11-13,15-16") ? "ERROR" : "OK", pStrSeq);
}
//End of ByteArray2StrSeqTest//

此外,模块内还增加自动化测试功能(TestSuite),可用来验证批量或单个实体的配置和查询操作。批量测试结果统计如下(省略各实体的具体测试结果):


在上述测试结果中,Failed TestCase(s)最为关键,表示失败的用例数目。此外,UnCompared TestCase(s)表示未做比较的条目数,如获取时间等易变属性的实体,无法预置恰当的期望结果,因此未做比较。测试过程中的打印信息可保存为日志文件,然后在打印日志中搜索Failure关键字,即可获知哪些配置失败。

当大量修改当前代码时,借助上述自动化测试功能,可迅速获知修改结果的影响。在开发新功能时,可先设计好测试用例和期望结果,然后按照“测试驱动开发”的模式来编码,提高编码效率和正确率。

3.6 直捣核心

传统的重构步骤是先容易后困难,先外围后核心。而作者反其道而行之,首先重构核心公共的代码。这样做的好处是:

1) 便于梳理头文件包含关系

在线调测工程中最初只保留最为公共的代码文件(如日志功能),重构并调测通过后再逐步添加其他单一功能的目标代码。该过程中会按需拆分和/或组合文件,减少头文件的嵌套和交叉引用。

2) 避免重复工作甚至返工

公共代码重构后并封装后,对较外围的应用代码重构时会更容易消除冗余。若先重构好外围代码,很可能发现某些逻辑可以统一到公共代码内,从而导致大面积返工;而若先着手重构公共代码,则通过研读外围代码对其的使用方式,很容易及早甄别这些冗余性。

3) 迭代验证

在重构后的公共代码基础上逐步叠加外围代码时,也在反复测试公共代码的正确性和易用性。

4) 增强信心

先核心后外围、逐步叠加验证的过程可控,可增强大规模重构时的信心,缓解压力。反之,若先重构好外围代码,等触及核心时牵一发而动全身,压力极大。

四 效果

在某产品代码基础上,进行OMCI模块DB/LOG/实体存取/消息处理/性能统计等重构。经过三个多月的重构后,模块代码复杂度大幅下降(某核心源文件平均复杂度降为原先1/4),代码显著精简(据不完全统计已精简万余行),同时更具可读性。新增代码的过程中,编写大量工具类宏和函数,并增加OMCI自动化测试、内存检测等实用功能。

通过LineCount和Source Monitor度量某功能代码重构效果,如下表所示:


此外,重构过程中积累的通用框架、代码及经验,可进一步应用到新的项目中。

温馨提示

由于微信公众号近期改变了推送规则,如果您想经常看到我们的文章,可以在每次阅读后,在页面下方点一个「赞」或「在看」,这样每次推送的文章才会第一时间出现在您的订阅列表里。

免责声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

猜你喜欢:

WiFi6+蓝牙+星闪,三合一开发板,真香!

Github上热门 C 语言项目汇总!

嵌入式,可测试性软件设计!

一些低功耗软件设计的要点!

嵌入式 C 保护结构体的方式

实用 | 10分钟教你通过网页点灯

谈谈嵌入式软件的兼容性!

分享一个嵌入式代码生成器设计思路!

点击阅读原文,查看更多分享。

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦